These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 36810209)

  • 1. ALL-tRNAseq enables robust tRNA profiling in tissue samples.
    Scheepbouwer C; Aparicio-Puerta E; Gomez-Martin C; Verschueren H; van Eijndhoven M; Wedekind LE; Giannoukakos S; Hijmering N; Gasparotto L; van der Galien HT; van Rijn RS; Aronica E; Kibbelaar R; Heine VM; Wesseling P; Noske DP; Vandertop WP; de Jong D; Pegtel DM; Hackenberg M; Wurdinger T; Gerber A; Koppers-Lalic D
    Genes Dev; 2023 Mar; 37(5-6):243-257. PubMed ID: 36810209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LOTTE-seq (Long hairpin oligonucleotide based tRNA high-throughput sequencing): specific selection of tRNAs with 3'-CCA end for high-throughput sequencing.
    Erber L; Hoffmann A; Fallmann J; Betat H; Stadler PF; Mörl M
    RNA Biol; 2020 Jan; 17(1):23-32. PubMed ID: 31486704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution quantitative profiling of tRNA abundance and modification status in eukaryotes by mim-tRNAseq.
    Behrens A; Rodschinka G; Nedialkova DD
    Mol Cell; 2021 Apr; 81(8):1802-1815.e7. PubMed ID: 33581077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing Expression and Processing of Precursor and Mature Human tRNAs by Hydro-tRNAseq and PAR-CLIP.
    Gogakos T; Brown M; Garzia A; Meyer C; Hafner M; Tuschl T
    Cell Rep; 2017 Aug; 20(6):1463-1475. PubMed ID: 28793268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. YAMAT-seq: an efficient method for high-throughput sequencing of mature transfer RNAs.
    Shigematsu M; Honda S; Loher P; Telonis AG; Rigoutsos I; Kirino Y
    Nucleic Acids Res; 2017 May; 45(9):e70. PubMed ID: 28108659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative tRNA-sequencing uncovers metazoan tissue-specific tRNA regulation.
    Pinkard O; McFarland S; Sweet T; Coller J
    Nat Commun; 2020 Aug; 11(1):4104. PubMed ID: 32796835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential expression of human tRNA genes drives the abundance of tRNA-derived fragments.
    Torres AG; Reina O; Stephan-Otto Attolini C; Ribas de Pouplana L
    Proc Natl Acad Sci U S A; 2019 Apr; 116(17):8451-8456. PubMed ID: 30962382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining tRNA sequencing methods to characterize plant tRNA expression and post-transcriptional modification.
    Warren JM; Salinas-Giegé T; Hummel G; Coots NL; Svendsen JM; Brown KC; Drouard L; Sloan DB
    RNA Biol; 2021 Jan; 18(1):64-78. PubMed ID: 32715941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of tRNA abundance and modifications by nanopore RNA sequencing.
    Lucas MC; Pryszcz LP; Medina R; Milenkovic I; Camacho N; Marchand V; Motorin Y; Ribas de Pouplana L; Novoa EM
    Nat Biotechnol; 2024 Jan; 42(1):72-86. PubMed ID: 37024678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A robust method for measuring aminoacylation through tRNA-Seq.
    Davidsen K; Sullivan LB
    Elife; 2024 Jul; 12():. PubMed ID: 39076160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The tRNA regulome in neurodevelopmental and neuropsychiatric disease.
    Blaze J; Akbarian S
    Mol Psychiatry; 2022 Aug; 27(8):3204-3213. PubMed ID: 35505091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diverse cell stresses induce unique patterns of tRNA up- and down-regulation: tRNA-seq for quantifying changes in tRNA copy number.
    Pang YL; Abo R; Levine SS; Dedon PC
    Nucleic Acids Res; 2014 Dec; 42(22):e170. PubMed ID: 25348403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Why should cancer biologists care about tRNAs? tRNA synthesis, mRNA translation and the control of growth.
    Grewal SS
    Biochim Biophys Acta; 2015 Jul; 1849(7):898-907. PubMed ID: 25497380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. tRNA base methylation identification and quantification via high-throughput sequencing.
    Clark WC; Evans ME; Dominissini D; Zheng G; Pan T
    RNA; 2016 Nov; 22(11):1771-1784. PubMed ID: 27613580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and computational workflow for the analysis of tRNA pools from eukaryotic cells by mim-tRNAseq.
    Behrens A; Nedialkova DD
    STAR Protoc; 2022 Sep; 3(3):101579. PubMed ID: 35942339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleotide resolution profiling of m
    Lin S; Liu Q; Jiang YZ; Gregory RI
    Nat Protoc; 2019 Nov; 14(11):3220-3242. PubMed ID: 31619810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide Translation Profiling by Ribosome-Bound tRNA Capture.
    Chen CW; Tanaka M
    Cell Rep; 2018 Apr; 23(2):608-621. PubMed ID: 29642016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbiome characterization by high-throughput transfer RNA sequencing and modification analysis.
    Schwartz MH; Wang H; Pan JN; Clark WC; Cui S; Eckwahl MJ; Pan DW; Parisien M; Owens SM; Cheng BL; Martinez K; Xu J; Chang EB; Pan T; Eren AM
    Nat Commun; 2018 Dec; 9(1):5353. PubMed ID: 30559359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transfer RNA detection by small RNA deep sequencing and disease association with myelodysplastic syndromes.
    Guo Y; Bosompem A; Mohan S; Erdogan B; Ye F; Vickers KC; Sheng Q; Zhao S; Li CI; Su PF; Jagasia M; Strickland SA; Griffiths EA; Kim AS
    BMC Genomics; 2015 Sep; 16():727. PubMed ID: 26400237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying the 'escapers' among RNA species.
    Ferro I; Ignatova Z
    Biochem Soc Trans; 2015 Dec; 43(6):1215-20. PubMed ID: 26614663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.