These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Development of a combined radiomics and CT feature-based model for differentiating malignant from benign subcentimeter solid pulmonary nodules. Liu J; Qi L; Wang Y; Li F; Chen J; Cui S; Cheng S; Zhou Z; Li L; Wang J Eur Radiol Exp; 2024 Jan; 8(1):8. PubMed ID: 38228868 [TBL] [Abstract][Full Text] [Related]
4. Preoperative diagnosis of malignant pulmonary nodules in lung cancer screening with a radiomics nomogram. Liu A; Wang Z; Yang Y; Wang J; Dai X; Wang L; Lu Y; Xue F Cancer Commun (Lond); 2020 Jan; 40(1):16-24. PubMed ID: 32125097 [TBL] [Abstract][Full Text] [Related]
5. Diagnosis of Benign and Malignant Pulmonary Ground-Glass Nodules Using Computed Tomography Radiomics Parameters. Liang L; Zhang H; Lei H; Zhou H; Wu Y; Shen J Technol Cancer Res Treat; 2022; 21():15330338221119748. PubMed ID: 36259167 [No Abstract] [Full Text] [Related]
6. The Value of Topological Radiomics Analysis in Predicting Malignant Risk of Pulmonary Ground-Glass Nodules: A Multi-Center Study. Wang M; Wei Y; Zhu M; Yu H; Guo C; Chen Z; Shi W; Ren J; Zhao W; Yang Z; Chen LA Technol Cancer Res Treat; 2024; 23():15330338241287089. PubMed ID: 39363876 [TBL] [Abstract][Full Text] [Related]
7. The Value of Radiomics Features Based on HRCT in Predicting whether the Lung Sub-Centimeter Pure Ground Glass Nodule is Benign or Malignant. Ping X; Liu Y; Hong R; Hu S; Hu C Curr Med Imaging; 2024; 20():e15734056306672. PubMed ID: 38988168 [TBL] [Abstract][Full Text] [Related]
8. A CT-based radiomics nomogram for prediction of lung adenocarcinomas and granulomatous lesions in patient with solitary sub-centimeter solid nodules. Chen X; Feng B; Chen Y; Liu K; Li K; Duan X; Hao Y; Cui E; Liu Z; Zhang C; Long W; Liu X Cancer Imaging; 2020 Jul; 20(1):45. PubMed ID: 32641166 [TBL] [Abstract][Full Text] [Related]
9. Radiomics for lung adenocarcinoma manifesting as pure ground-glass nodules: invasive prediction. Sun Y; Li C; Jin L; Gao P; Zhao W; Ma W; Tan M; Wu W; Duan S; Shan Y; Li M Eur Radiol; 2020 Jul; 30(7):3650-3659. PubMed ID: 32162003 [TBL] [Abstract][Full Text] [Related]
10. Deep learning for malignancy risk estimation of incidental sub-centimeter pulmonary nodules on CT images. Zhang R; Wei Y; Wang D; Chen B; Sun H; Lei Y; Zhou Q; Luo Z; Jiang L; Qiu R; Shi F; Li W Eur Radiol; 2024 Jul; 34(7):4218-4229. PubMed ID: 38114849 [TBL] [Abstract][Full Text] [Related]
12. The value of radiomics based on dual-energy CT for differentiating benign from malignant solitary pulmonary nodules. Liang G; Yu W; Liu SQ; Xie MG; Liu M BMC Med Imaging; 2022 May; 22(1):95. PubMed ID: 35597900 [TBL] [Abstract][Full Text] [Related]
13. Preoperative CT-based radiomics combined with intraoperative frozen section is predictive of invasive adenocarcinoma in pulmonary nodules: a multicenter study. Wu G; Woodruff HC; Sanduleanu S; Refaee T; Jochems A; Leijenaar R; Gietema H; Shen J; Wang R; Xiong J; Bian J; Wu J; Lambin P Eur Radiol; 2020 May; 30(5):2680-2691. PubMed ID: 32006165 [TBL] [Abstract][Full Text] [Related]
14. Development and Validation of a Deep Learning Radiomics Model to Predict High-Risk Pathologic Pulmonary Nodules Using Preoperative Computed Tomography. Ye G; Wu G; Li K; Zhang C; Zhuang Y; Liu H; Song E; Qi Y; Li Y; Yang F; Liao Y Acad Radiol; 2024 Apr; 31(4):1686-1697. PubMed ID: 37802672 [TBL] [Abstract][Full Text] [Related]
15. Radiomic signature based on CT imaging to distinguish invasive adenocarcinoma from minimally invasive adenocarcinoma in pure ground-glass nodules with pleural contact. Jiang Y; Che S; Ma S; Liu X; Guo Y; Liu A; Li G; Li Z Cancer Imaging; 2021 Jan; 21(1):1. PubMed ID: 33407884 [TBL] [Abstract][Full Text] [Related]
16. Prediction of the Benign or Malignant Nature of Pulmonary Pure Ground-Glass Nodules Based on Radiomics Analysis of High-Resolution Computed Tomography Images. Ping X; Jiang N; Meng Q; Hu C Tomography; 2024 Jul; 10(7):1042-1053. PubMed ID: 39058050 [TBL] [Abstract][Full Text] [Related]
17. Performance of radiomics models derived from different CT reconstruction parameters for lung cancer risk prediction. Zhang R; Shi J; Liu S; Chen B; Li W BMC Pulm Med; 2023 Apr; 23(1):132. PubMed ID: 37081469 [TBL] [Abstract][Full Text] [Related]
18. Effect of CT image acquisition parameters on diagnostic performance of radiomics in predicting malignancy of pulmonary nodules of different sizes. Xu Y; Lu L; Sun SH; E LN; Lian W; Yang H; Schwartz LH; Yang ZH; Zhao B Eur Radiol; 2022 Mar; 32(3):1517-1527. PubMed ID: 34549324 [TBL] [Abstract][Full Text] [Related]
19. The scoring system combined with radiomics and imaging features in predicting the malignant potential of incidental indeterminate small (<20 mm) solid pulmonary nodules. Qu BQ; Wang Y; Pan YP; Cao PW; Deng XY BMC Med Imaging; 2024 Sep; 24(1):234. PubMed ID: 39243018 [TBL] [Abstract][Full Text] [Related]
20. External validation of radiomics-based predictive models in low-dose CT screening for early lung cancer diagnosis. Garau N; Paganelli C; Summers P; Choi W; Alam S; Lu W; Fanciullo C; Bellomi M; Baroni G; Rampinelli C Med Phys; 2020 Sep; 47(9):4125-4136. PubMed ID: 32488865 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]