These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 36810735)
1. Sugar transporter Slc37a2 regulates bone metabolism in mice via a tubular lysosomal network in osteoclasts. Ng PY; Ribet ABP; Guo Q; Mullin BH; Tan JWY; Landao-Bassonga E; Stephens S; Chen K; Yuan J; Abudulai L; Bollen M; Nguyen ETTT; Kular J; Papadimitriou JM; Søe K; Teasdale RD; Xu J; Parton RG; Takayanagi H; Pavlos NJ Nat Commun; 2023 Feb; 14(1):906. PubMed ID: 36810735 [TBL] [Abstract][Full Text] [Related]
2. Autophagy proteins regulate the secretory component of osteoclastic bone resorption. DeSelm CJ; Miller BC; Zou W; Beatty WL; van Meel E; Takahata Y; Klumperman J; Tooze SA; Teitelbaum SL; Virgin HW Dev Cell; 2011 Nov; 21(5):966-74. PubMed ID: 22055344 [TBL] [Abstract][Full Text] [Related]
3. Aesculetin Inhibits Osteoclastic Bone Resorption through Blocking Ruffled Border Formation and Lysosomal Trafficking. Na W; Lee EJ; Kang MK; Kim YH; Kim DY; Oh H; Kim SI; Oh SY; Kang YH Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33203061 [TBL] [Abstract][Full Text] [Related]
4. Rab GTPases in Osteoclastic Bone Resorption and Autophagy. Roy M; Roux S Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33081155 [TBL] [Abstract][Full Text] [Related]
5. Actin-binding protein coronin 1A controls osteoclastic bone resorption by regulating lysosomal secretion of cathepsin K. Ohmae S; Noma N; Toyomoto M; Shinohara M; Takeiri M; Fuji H; Takemoto K; Iwaisako K; Fujita T; Takeda N; Kawatani M; Aoyama M; Hagiwara M; Ishihama Y; Asagiri M Sci Rep; 2017 Mar; 7():41710. PubMed ID: 28300073 [TBL] [Abstract][Full Text] [Related]
6. Protein kinase C-delta deficiency perturbs bone homeostasis by selective uncoupling of cathepsin K secretion and ruffled border formation in osteoclasts. Cremasco V; Decker CE; Stumpo D; Blackshear PJ; Nakayama KI; Nakayama K; Lupu TS; Graham DB; Novack DV; Faccio R J Bone Miner Res; 2012 Dec; 27(12):2452-63. PubMed ID: 22806935 [TBL] [Abstract][Full Text] [Related]
7. V-ATPase subunit ATP6AP1 (Ac45) regulates osteoclast differentiation, extracellular acidification, lysosomal trafficking, and protease exocytosis in osteoclast-mediated bone resorption. Yang DQ; Feng S; Chen W; Zhao H; Paulson C; Li YP J Bone Miner Res; 2012 Aug; 27(8):1695-707. PubMed ID: 22467241 [TBL] [Abstract][Full Text] [Related]
8. V-ATPase a3 Subunit in Secretory Lysosome Trafficking in Osteoclasts. Nakanishi-Matsui M; Matsumoto N Biol Pharm Bull; 2022; 45(10):1426-1431. PubMed ID: 36184499 [TBL] [Abstract][Full Text] [Related]
9. Increased synthesis and specific localization of a major lysosomal membrane sialoglycoprotein (LGP107) at the ruffled border membrane of active osteoclasts. Akamine A; Tsukuba T; Kimura R; Maeda K; Tanaka Y; Kato K; Yamamoto K Histochemistry; 1993 Aug; 100(2):101-8. PubMed ID: 8244761 [TBL] [Abstract][Full Text] [Related]
10. Membrane trafficking in osteoclasts and implications for osteoporosis. Ng PY; Brigitte Patricia Ribet A; Pavlos NJ Biochem Soc Trans; 2019 Apr; 47(2):639-650. PubMed ID: 30837319 [TBL] [Abstract][Full Text] [Related]
11. Disruption of the dynein-dynactin complex unveils motor-specific functions in osteoclast formation and bone resorption. Ng PY; Cheng TS; Zhao H; Ye S; Sm Ang E; Khor EC; Feng HT; Xu J; Zheng MH; Pavlos NJ J Bone Miner Res; 2013 Jan; 28(1):119-34. PubMed ID: 22887640 [TBL] [Abstract][Full Text] [Related]
12. Vesicular trafficking in osteoclasts. Coxon FP; Taylor A Semin Cell Dev Biol; 2008 Oct; 19(5):424-33. PubMed ID: 18768162 [TBL] [Abstract][Full Text] [Related]
13. Pharmacological sequestration of intracellular cholesterol in late endosomes disrupts ruffled border formation in osteoclasts. Zhao H; Väänänen HK J Bone Miner Res; 2006 Mar; 21(3):456-65. PubMed ID: 16491294 [TBL] [Abstract][Full Text] [Related]
14. Regulation of lysosome biogenesis and functions in osteoclasts. Lacombe J; Karsenty G; Ferron M Cell Cycle; 2013 Sep; 12(17):2744-52. PubMed ID: 23966172 [TBL] [Abstract][Full Text] [Related]
15. The resorptive apparatus of osteoclasts supports lysosomotropism and increases potency of basic versus non-basic inhibitors of cathepsin K. Fuller K; Lindstrom E; Edlund M; Henderson I; Grabowska U; Szewczyk KA; Moss R; Samuelsson B; Chambers TJ Bone; 2010 May; 46(5):1400-7. PubMed ID: 20097319 [TBL] [Abstract][Full Text] [Related]
16. Snx10 and PIKfyve are required for lysosome formation in osteoclasts. Sultana F; Morse LR; Picotto G; Liu W; Jha PK; Odgren PR; Battaglino RA J Cell Biochem; 2020 Apr; 121(4):2927-2937. PubMed ID: 31692073 [TBL] [Abstract][Full Text] [Related]
17. [Osteoclasts in bone metabolism]. Hakeda Y; Kumegawa M Kaibogaku Zasshi; 1991 Aug; 66(4):215-25. PubMed ID: 1759556 [TBL] [Abstract][Full Text] [Related]
18. Osteoclastic bone resorption by a polarized vacuolar proton pump. Blair HC; Teitelbaum SL; Ghiselli R; Gluck S Science; 1989 Aug; 245(4920):855-7. PubMed ID: 2528207 [TBL] [Abstract][Full Text] [Related]
19. The osteoclast and its unique cytoskeleton. Teitelbaum SL Ann N Y Acad Sci; 2011 Dec; 1240():14-7. PubMed ID: 22172034 [TBL] [Abstract][Full Text] [Related]
20. Prostate transmembrane protein androgen induced 1 is induced by activation of osteoclasts and regulates bone resorption. Xu X; Hirata H; Shiraki M; Kamohara A; Nishioka K; Miyamoto H; Kukita T; Kukita A FASEB J; 2019 Mar; 33(3):4365-4375. PubMed ID: 30557043 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]