These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 36810735)
41. Removal of osteoclast bone resorption products by transcytosis. Salo J; Lehenkari P; Mulari M; Metsikkö K; Väänänen HK Science; 1997 Apr; 276(5310):270-3. PubMed ID: 9092479 [TBL] [Abstract][Full Text] [Related]
42. Proteomic analysis of lysosomal acid hydrolases secreted by osteoclasts: implications for lytic enzyme transport and bone metabolism. Czupalla C; Mansukoski H; Riedl T; Thiel D; Krause E; Hoflack B Mol Cell Proteomics; 2006 Jan; 5(1):134-43. PubMed ID: 16215273 [TBL] [Abstract][Full Text] [Related]
43. Specific biological functions of vacuolar-type H(+)-ATPase and lysosomal cysteine proteinase, cathepsin K, in osteoclasts. Sahara T; Itoh K; Debari K; Sasaki T Anat Rec A Discov Mol Cell Evol Biol; 2003 Feb; 270(2):152-61. PubMed ID: 12524690 [TBL] [Abstract][Full Text] [Related]
44. Overexpression of cathepsin K accelerates the resorption cycle and osteoblast differentiation in vitro. Morko J; Kiviranta R; Mulari MT; Ivaska KK; Väänänen HK; Vuorio E; Laitala-Leinonen T Bone; 2009 Apr; 44(4):717-28. PubMed ID: 19118660 [TBL] [Abstract][Full Text] [Related]
45. The Foreign Body Giant Cell Cannot Resorb Bone, But Dissolves Hydroxyapatite Like Osteoclasts. ten Harkel B; Schoenmaker T; Picavet DI; Davison NL; de Vries TJ; Everts V PLoS One; 2015; 10(10):e0139564. PubMed ID: 26426806 [TBL] [Abstract][Full Text] [Related]
46. A Mild Inhibition of Cathepsin K Paradoxically Stimulates the Resorptive Activity of Osteoclasts in Culture. Pirapaharan DC; Søe K; Panwar P; Madsen JS; Bergmann ML; Overgaard M; Brömme D; Delaisse JM Calcif Tissue Int; 2019 Jan; 104(1):92-101. PubMed ID: 30194476 [TBL] [Abstract][Full Text] [Related]
47. Vascular expression of the chemokine CX3CL1 promotes osteoclast recruitment and exacerbates bone resorption in an irradiated murine model. Han KH; Ryu JW; Lim KE; Lee SH; Kim Y; Hwang CS; Choi JY; Han KO Bone; 2014 Apr; 61():91-101. PubMed ID: 24401612 [TBL] [Abstract][Full Text] [Related]
48. Localization and possible role of two different alpha v beta 3 integrin conformations in resting and resorbing osteoclasts. Faccio R; Grano M; Colucci S; Villa A; Giannelli G; Quaranta V; Zallone A J Cell Sci; 2002 Jul; 115(Pt 14):2919-29. PubMed ID: 12082152 [TBL] [Abstract][Full Text] [Related]
49. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Saftig P; Hunziker E; Wehmeyer O; Jones S; Boyde A; Rommerskirch W; Moritz JD; Schu P; von Figura K Proc Natl Acad Sci U S A; 1998 Nov; 95(23):13453-8. PubMed ID: 9811821 [TBL] [Abstract][Full Text] [Related]
50. Vacuolar-type ATPase: A proton pump to lysosomal trafficking. Futai M; Sun-Wada GH; Wada Y; Matsumoto N; Nakanishi-Matsui M Proc Jpn Acad Ser B Phys Biol Sci; 2019; 95(6):261-277. PubMed ID: 31189779 [TBL] [Abstract][Full Text] [Related]
51. Effects of brefeldin-A: potent inhibitor of intracellular protein transport on ultrastructure and resorptive function of cultured osteoclasts. Sahara T; Sasaki T Anat Rec; 2001 Jun; 263(2):127-38. PubMed ID: 11360230 [TBL] [Abstract][Full Text] [Related]
52. Intracellular membrane trafficking pathways in bone-resorbing osteoclasts revealed by cloning and subcellular localization studies of small GTP-binding rab proteins. Zhao H; Ettala O; Väänänen HK Biochem Biophys Res Commun; 2002 May; 293(3):1060-5. PubMed ID: 12051767 [TBL] [Abstract][Full Text] [Related]
53. PMEPA1 and NEDD4 control the proton production of osteoclasts by regulating vesicular trafficking. Hirata H; Xu X; Nishioka K; Matsuhisa F; Kitajima S; Kukita T; Murayama M; Urano Y; Miyamoto H; Mawatari M; Kukita A FASEB J; 2021 Feb; 35(2):e21281. PubMed ID: 33484199 [TBL] [Abstract][Full Text] [Related]
54. Deletion of Adseverin in Osteoclasts Affects Cell Structure But Not Bone Metabolism. Cao Y; Wang Y; Sprangers S; Picavet DI; Glogauer M; McCulloch CA; Everts V Calcif Tissue Int; 2017 Aug; 101(2):207-216. PubMed ID: 28389691 [TBL] [Abstract][Full Text] [Related]
55. Modulation of osteoclast differentiation and bone resorption by Rho GTPases. Touaitahuata H; Blangy A; Vives V Small GTPases; 2014; 5():e28119. PubMed ID: 24614674 [TBL] [Abstract][Full Text] [Related]
56. Plasma Membrane Receptors Involved in the Binding and Response of Osteoclasts to Noncellular Components of the Bone. Karanth DS; Martin ML; Holliday LS Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576260 [TBL] [Abstract][Full Text] [Related]
57. Recent advances in the ultrastructural assessment of osteoclastic resorptive functions. Sasaki T Microsc Res Tech; 1996 Feb; 33(2):182-91. PubMed ID: 8845517 [TBL] [Abstract][Full Text] [Related]
58. Cdc42 regulates bone modeling and remodeling in mice by modulating RANKL/M-CSF signaling and osteoclast polarization. Ito Y; Teitelbaum SL; Zou W; Zheng Y; Johnson JF; Chappel J; Ross FP; Zhao H J Clin Invest; 2010 Jun; 120(6):1981-93. PubMed ID: 20501942 [TBL] [Abstract][Full Text] [Related]
59. Surface-induced regulation of podosome organization and dynamics in cultured osteoclasts. Geblinger D; Geiger B; Addadi L Chembiochem; 2009 Jan; 10(1):158-65. PubMed ID: 19065685 [TBL] [Abstract][Full Text] [Related]