These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 36810867)
41. A facile co-crystallization approach to fabricate two-component carbon dot composites showing time-dependent evolutive room temperature phosphorescence colors. Qu J; Zhang X; Zhang S; Wang Z; Yu Y; Ding H; Tang Z; Heng X; Wang R; Jing S Nanoscale Adv; 2021 Aug; 3(17):5053-5061. PubMed ID: 36132350 [TBL] [Abstract][Full Text] [Related]
42. Full-Color Dynamic Afterglow in Carbon Dot-Based Materials Regulated by Dual-Phosphorescence Resonance Energy Transfer. Zhang L; Chen X; Xin M; Yang H; Guo D; Hu Y Small; 2024 Oct; ():e2406596. PubMed ID: 39420853 [TBL] [Abstract][Full Text] [Related]
43. Hour-Level Persistent Multicolor Phosphorescence Enabled by Carbon Dot-Based Nanocomposites Through a Multi-Confinement-Based Approach. Hu H; Li J; Gong X Small; 2024 Jun; 20(23):e2308457. PubMed ID: 38126697 [TBL] [Abstract][Full Text] [Related]
44. Multi-Stimuli-Responsive Carbon Dots with Intrinsic Photochromism and In Situ Radical Afterglow. Guo Z; Bian Y; Zhang L; Zhang J; Sun C; Cui D; Lv W; Zheng C; Huang W; Chen R Adv Mater; 2024 Nov; 36(45):e2409361. PubMed ID: 39267460 [TBL] [Abstract][Full Text] [Related]
45. Carbon Dots in Hydroxy Fluorides: Achieving Multicolor Long-Wavelength Room-Temperature Phosphorescence and Excellent Stability via Crystal Confinement. Liang P; Zheng Y; Zhang X; Wei H; Xu X; Yang X; Lin H; Hu C; Zhang X; Lei B; Wong WY; Liu Y; Zhuang J Nano Lett; 2022 Jul; 22(13):5127-5136. PubMed ID: 35700100 [TBL] [Abstract][Full Text] [Related]
46. Water-Soluble Luminescent Polymers with Room-Temperature Phosphorescence Based on the α-Amino Acids. Sheng C; Gao X; Ding Y; Guo M Macromol Rapid Commun; 2024 Aug; 45(16):e2400201. PubMed ID: 38747029 [TBL] [Abstract][Full Text] [Related]
47. Synthetic strategies, properties and sensing application of multicolor carbon dots: recent advances and future challenges. Du F; Yang LP; Wang LL J Mater Chem B; 2023 Aug; 11(34):8117-8135. PubMed ID: 37555267 [TBL] [Abstract][Full Text] [Related]
48. Water-soluble long afterglow carbon dots/silica composites for dual-channel detection of alkaline phosphatase and multi-level information anti-counterfeiting. Sun X; He W; Liu B Anal Methods; 2022 Dec; 14(47):5001-5011. PubMed ID: 36445329 [TBL] [Abstract][Full Text] [Related]
49. Promoting Room Temperature Phosphorescence through Electron Transfer from Carbon Dots to Promethazine. Su Q; Yang X ACS Appl Mater Interfaces; 2021 Sep; 13(34):41238-41248. PubMed ID: 34410103 [TBL] [Abstract][Full Text] [Related]
50. Hybrid metal halide family with color-time-dual-resolved phosphorescence for multiplexed information security applications. Liu YH; Yan TY; Dong MH; Yu FJ; Cao H; Xiao L; Han YF; Kong XW; Lei XW J Colloid Interface Sci; 2025 Jan; 678(Pt A):141-151. PubMed ID: 39182388 [TBL] [Abstract][Full Text] [Related]
51. Achieving Tunable Organic Afterglow and UV-Irradiation-Responsive Ultralong Room-Temperature Phosphorescence from Pyridine-Substituted Triphenylamine Derivatives. Xiong S; Xiong Y; Wang D; Pan Y; Chen K; Zhao Z; Wang D; Tang BZ Adv Mater; 2023 Jul; 35(28):e2301874. PubMed ID: 37026437 [TBL] [Abstract][Full Text] [Related]
52. Time-Dependent and Excitation-Dependent Afterglow Color Evolution from the Assembly of Dual Carbon Dots in Zeolite. Zong S; Zhang J; Yin X; Li J; Qu S Nano Lett; 2024 Feb; 24(6):1859-1866. PubMed ID: 38289656 [TBL] [Abstract][Full Text] [Related]
53. Full-Color Long-Lived Room Temperature Phosphorescence in Aqueous Environment. Zheng Y; Zhou Q; Yang Y; Chen X; Wang C; Zheng X; Gao L; Yang C Small; 2022 May; 18(19):e2201223. PubMed ID: 35373912 [TBL] [Abstract][Full Text] [Related]
54. Synthesis of Visible Light Excitable Carbon Dot Phosphor-Al Lu D; Lu K; Wen HT; Wei Z; Bianco A; Wang GG; Zhang HY Small; 2023 Aug; 19(31):e2207046. PubMed ID: 36960674 [TBL] [Abstract][Full Text] [Related]
55. In Situ Confining Citric Acid-Derived Carbon Dots for Full-Color Room-Temperature Phosphorescence. Ding ZZ; Shen CL; Han JF; Zheng GS; Ni QC; Song RW; Liu KK; Zang JH; Dong L; Lou Q; Shan CX Small; 2023 Aug; 19(31):e2205916. PubMed ID: 36494158 [TBL] [Abstract][Full Text] [Related]
56. Carbonized Polymer Dots with Tunable Room-Temperature Phosphorescence Lifetime and Wavelength. Xia C; Zhu S; Zhang ST; Zeng Q; Tao S; Tian X; Li Y; Yang B ACS Appl Mater Interfaces; 2020 Aug; 12(34):38593-38601. PubMed ID: 32846498 [TBL] [Abstract][Full Text] [Related]
57. Visible-Light-Excited Room Temperature Phosphorescent Carbon Dots. Hu S; Jiang K; Wang Y; Wang S; Li Z; Lin H Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32143524 [TBL] [Abstract][Full Text] [Related]
58. Self-quenching-resistant solid-state carbon dots for mechanism and applications. Yan F; Yi C; Sun J; Zang Y; Wang Y; Xu M; Xu J Mikrochim Acta; 2021 Nov; 188(12):412. PubMed ID: 34741664 [TBL] [Abstract][Full Text] [Related]
59. Sustainable Silk-Derived Multimode Carbon Dots. Li S; Wang H; Lu H; Liang X; Wang H; Zhang M; Xia K; Yin Z; Zhang Y; Zhang X; Zhang Y Small; 2021 Nov; 17(44):e2103623. PubMed ID: 34546645 [TBL] [Abstract][Full Text] [Related]