These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 36810889)
1. Transcranial high-frequency random noise stimulation does not modulate Nogo N2 and Go/Nogo reaction times in somatosensory and auditory modalities. Yamashiro K; Ikarashi K; Makibuchi T; Anazawa S; Baba Y; Fujimoto T; Ochi G; Sato D Sci Rep; 2023 Feb; 13(1):3014. PubMed ID: 36810889 [TBL] [Abstract][Full Text] [Related]
2. Comparison of transcranial electrical stimulation regimens for effects on inhibitory circuit activity in primary somatosensory cortex and tactile spatial discrimination performance. Saito K; Otsuru N; Inukai Y; Miyaguchi S; Yokota H; Kojima S; Sasaki R; Onishi H Behav Brain Res; 2019 Dec; 375():112168. PubMed ID: 31442547 [TBL] [Abstract][Full Text] [Related]
3. Three repeated sessions of transcranial random noise stimulation (tRNS) leads to long-term effects on reaction time in the Go/No Go task. Brevet-Aeby C; Mondino M; Poulet E; Brunelin J Neurophysiol Clin; 2019 Feb; 49(1):27-32. PubMed ID: 30414823 [TBL] [Abstract][Full Text] [Related]
4. Exploring parameters of gamma transcranial alternating current stimulation (tACS) and full-spectrum transcranial random noise stimulation (tRNS) on human pharyngeal cortical excitability. Zhang M; Cheng I; Sasegbon A; Dou Z; Hamdy S Neurogastroenterol Motil; 2021 Sep; 33(9):e14173. PubMed ID: 34081376 [TBL] [Abstract][Full Text] [Related]
5. Comparison of the effects of transcranial random noise stimulation and transcranial direct current stimulation on motor cortical excitability. Ho KA; Taylor JL; Loo CK J ECT; 2015 Mar; 31(1):67-72. PubMed ID: 25010032 [TBL] [Abstract][Full Text] [Related]
6. Motor Task-Dependent Dissociated Effects of Transcranial Random Noise Stimulation in a Finger-Tapping Task Versus a Go/No-Go Task on Corticospinal Excitability and Task Performance. Jooss A; Haberbosch L; Köhn A; Rönnefarth M; Bathe-Peters R; Kozarzewski L; Fleischmann R; Scholz M; Schmidt S; Brandt SA Front Neurosci; 2019; 13():161. PubMed ID: 30872997 [No Abstract] [Full Text] [Related]
7. Increasing human leg motor cortex excitability by transcranial high frequency random noise stimulation. Laczó B; Antal A; Rothkegel H; Paulus W Restor Neurol Neurosci; 2014; 32(3):403-10. PubMed ID: 24576783 [TBL] [Abstract][Full Text] [Related]
8. Transcranial direct current stimulation and transcranial random noise stimulation over the cerebellum differentially affect the cerebellum and primary motor cortex pathway. Kawakami S; Inukai Y; Ikarashi H; Watanabe H; Miyaguchi S; Otsuru N; Onishi H J Clin Neurosci; 2022 Jun; 100():59-65. PubMed ID: 35421743 [TBL] [Abstract][Full Text] [Related]
9. Effects of transcranial random noise stimulation (tRNS) on affect, pain and attention in multiple sclerosis. Palm U; Chalah MA; Padberg F; Al-Ani T; Abdellaoui M; Sorel M; Dimitri D; Créange A; Lefaucheur JP; Ayache SS Restor Neurol Neurosci; 2016; 34(2):189-99. PubMed ID: 26890095 [TBL] [Abstract][Full Text] [Related]
10. Transcranial random noise stimulation over the primary motor cortex in PD-MCI patients: a crossover, randomized, sham-controlled study. Monastero R; Baschi R; Nicoletti A; Pilati L; Pagano L; Cicero CE; Zappia M; Brighina F J Neural Transm (Vienna); 2020 Dec; 127(12):1589-1597. PubMed ID: 32965593 [TBL] [Abstract][Full Text] [Related]
11. Transcranial random noise stimulation is more effective than transcranial direct current stimulation for enhancing working memory in healthy individuals: Behavioural and electrophysiological evidence. Murphy OW; Hoy KE; Wong D; Bailey NW; Fitzgerald PB; Segrave RA Brain Stimul; 2020; 13(5):1370-1380. PubMed ID: 32659482 [TBL] [Abstract][Full Text] [Related]
12. Electrophysiological evaluation of high and low-frequency transcranial random noise stimulation over the auditory cortex. Schoisswohl S; Langguth B; Gebel N; Poeppl TB; Kreuzer PM; Schecklmann M Prog Brain Res; 2021; 263():95-108. PubMed ID: 34243893 [TBL] [Abstract][Full Text] [Related]
13. The effect of transcranial random noise stimulation on corticospinal excitability and motor performance. Abe T; Miyaguchi S; Otsuru N; Onishi H Neurosci Lett; 2019 Jul; 705():138-142. PubMed ID: 31028846 [TBL] [Abstract][Full Text] [Related]
14. Transcranial Random Noise Stimulation Acutely Lowers the Response Threshold of Human Motor Circuits. Potok W; Bächinger M; van der Groen O; Cretu AL; Wenderoth N J Neurosci; 2021 Apr; 41(17):3842-3853. PubMed ID: 33737456 [TBL] [Abstract][Full Text] [Related]
15. Mechanistic account of the left auditory cortex for tone-matching in schizophrenia: A pilot transcranial random noise stimulation (tRNS) sham-controlled study. Dondé C; Fivel L; Haesebaert F; Poulet E; Mondino M; Brunelin J Asian J Psychiatr; 2024 Feb; 92():103879. PubMed ID: 38157711 [TBL] [Abstract][Full Text] [Related]
16. Potential impact of bifrontal transcranial random noise stimulation (tRNS) on the semantic Stroop effect and its resting-state EEG correlates. Dondé C; Brevet-Aeby C; Poulet E; Mondino M; Brunelin J Neurophysiol Clin; 2019 Jun; 49(3):243-248. PubMed ID: 30930187 [TBL] [Abstract][Full Text] [Related]
17. The Effects of 1 mA tACS and tRNS on Children/Adolescents and Adults: Investigating Age and Sensitivity to Sham Stimulation. Splittgerber M; Suwelack JH; Kadish NE; Moliadze V Neural Plast; 2020; 2020():8896423. PubMed ID: 32855633 [TBL] [Abstract][Full Text] [Related]
18. Effects of transcranial random noise stimulation timing on corticospinal excitability and motor function. Hoshi H; Kojima S; Otsuru N; Onishi H Behav Brain Res; 2021 Sep; 414():113479. PubMed ID: 34302882 [TBL] [Abstract][Full Text] [Related]
19. Modulating the excitability of the visual cortex using a stimulation priming paradigm. Herpich F; Contò F; van Koningsbruggen M; Battelli L Neuropsychologia; 2018 Oct; 119():165-171. PubMed ID: 30107155 [TBL] [Abstract][Full Text] [Related]
20. Electroencephalographic effects of transcranial random noise stimulation in the auditory cortex. Van Doren J; Langguth B; Schecklmann M Brain Stimul; 2014; 7(6):807-12. PubMed ID: 25245591 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]