These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 36811112)

  • 21. Comparative analysis of gene expression identifies distinct molecular signatures of bone marrow- and periosteal-skeletal stem/progenitor cells.
    Deveza L; Ortinau L; Lei K; Park D
    PLoS One; 2018; 13(1):e0190909. PubMed ID: 29342188
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New insights on the reparative cells in bone regeneration and repair.
    Huang S; Jin M; Su N; Chen L
    Biol Rev Camb Philos Soc; 2021 Apr; 96(2):357-375. PubMed ID: 33051970
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resting zone of the growth plate houses a unique class of skeletal stem cells.
    Mizuhashi K; Ono W; Matsushita Y; Sakagami N; Takahashi A; Saunders TL; Nagasawa T; Kronenberg HM; Ono N
    Nature; 2018 Nov; 563(7730):254-258. PubMed ID: 30401834
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Skeletal stem and progenitor cells in bone physiology, ageing and disease.
    Melis S; Trompet D; Chagin AS; Maes C
    Nat Rev Endocrinol; 2024 Oct; ():. PubMed ID: 39379711
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bone repair with skeletal stem cells: rationale, progress to date and clinical application.
    Jones EA; Giannoudis PV; Kouroupis D
    Ther Adv Musculoskelet Dis; 2016 Jun; 8(3):57-71. PubMed ID: 27247633
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Concise Review: Conceptualizing Paralogous Stem-Cell Niches and Unfolding Bone Marrow Progenitor Cell Identities.
    Chen KG; Johnson KR; McKay RDG; Robey PG
    Stem Cells; 2018 Jan; 36(1):11-21. PubMed ID: 28948674
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ferulic acid promotes bone defect repair after radiation by maintaining the stemness of skeletal stem cells.
    Liang JW; Li PL; Wang Q; Liao S; Hu W; Zhao ZD; Li ZL; Yin BF; Mao N; Ding L; Zhu H
    Stem Cells Transl Med; 2021 Aug; 10(8):1217-1231. PubMed ID: 33750031
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rankl genetic deficiency and functional blockade undermine skeletal stem and progenitor cell differentiation.
    Schiavone ML; Crisafulli L; Camisaschi C; De Simone G; Liberati FR; Palagano E; Rucci N; Ficara F; Sobacchi C
    Stem Cell Res Ther; 2024 Jul; 15(1):203. PubMed ID: 38971808
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cellular dynamics of distinct skeletal cells and the development of osteosarcoma.
    Otani S; Ohnuma M; Ito K; Matsushita Y
    Front Endocrinol (Lausanne); 2023; 14():1181204. PubMed ID: 37229448
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of Functionally Distinct Mx1+αSMA+ Periosteal Skeletal Stem Cells.
    Ortinau LC; Wang H; Lei K; Deveza L; Jeong Y; Hara Y; Grafe I; Rosenfeld SB; Lee D; Lee B; Scadden DT; Park D
    Cell Stem Cell; 2019 Dec; 25(6):784-796.e5. PubMed ID: 31809737
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Skeletal stem cells in bone development, homeostasis, and disease.
    Yuan G; Lin X; Liu Y; Greenblatt MB; Xu R
    Protein Cell; 2024 Jul; 15(8):559-574. PubMed ID: 38442300
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stem and progenitor cells in skeletal development.
    Ono N; Balani DH; Kronenberg HM
    Curr Top Dev Biol; 2019; 133():1-24. PubMed ID: 30902249
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Skeletal stem cell isolation: A review on the state-of-the-art microfluidic label-free sorting techniques.
    Xavier M; Oreffo ROC; Morgan H
    Biotechnol Adv; 2016; 34(5):908-923. PubMed ID: 27236022
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration.
    Colnot C
    J Bone Miner Res; 2009 Feb; 24(2):274-82. PubMed ID: 18847330
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanotopography controls cell cycle changes involved with skeletal stem cell self-renewal and multipotency.
    Lee LC; Gadegaard N; de Andrés MC; Turner LA; Burgess KV; Yarwood SJ; Wells J; Salmeron-Sanchez M; Meek D; Oreffo RO; Dalby MJ
    Biomaterials; 2017 Feb; 116():10-20. PubMed ID: 27914982
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Revised Perspective of Skeletal Stem Cell Biology.
    Ambrosi TH; Longaker MT; Chan CKF
    Front Cell Dev Biol; 2019; 7():189. PubMed ID: 31572721
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CD146+ skeletal stem cells from growth plate exhibit specific chondrogenic differentiation capacity in vitro.
    Wu YX; Jing XZ; Sun Y; Ye YP; Guo JC; Huang JM; Xiang W; Zhang JM; Guo FJ
    Mol Med Rep; 2017 Dec; 16(6):8019-8028. PubMed ID: 28983600
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Research progress in the identification and lineage differentiation of skeletal stem cell].
    Li QW; Yuan Q
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2021 Jan; 56(1):113-118. PubMed ID: 34645247
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cebpb Regulates Skeletal Stem Cell Osteogenic Differentiation and Fracture Healing via the WNT/
    Wang J; Yang C; Kong F; Zhang Z; Ji S; Sun G
    Stem Cells Int; 2022; 2022():2091615. PubMed ID: 35898655
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Signaling molecules and pathways regulating the fate of spermatogonial stem cells.
    He Z; Kokkinaki M; Dym M
    Microsc Res Tech; 2009 Aug; 72(8):586-95. PubMed ID: 19263492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.