These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36811784)

  • 21. Kinetics, Thermodynamics, and Volatile Products of Camphorwood Pyrolysis in Inert Atmosphere.
    Xu X; Pan R; Li P; Chen R
    Appl Biochem Biotechnol; 2020 Aug; 191(4):1605-1623. PubMed ID: 32193804
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identifying thermal breakdown products of thermoplastics.
    Guillemot M; Oury B; Melin S
    J Occup Environ Hyg; 2017 Jul; 14(7):551-561. PubMed ID: 28426293
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synergistic interactions, kinetic and thermodynamic analysis of co-pyrolysis of municipal paper and polypropylene waste.
    Galiwango E; A Gabbar H
    Waste Manag; 2022 Jun; 146():86-93. PubMed ID: 35580372
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Co-pyrolysis characteristic of biomass and bituminous coal.
    Li S; Chen X; Liu A; Wang L; Yu G
    Bioresour Technol; 2015 Mar; 179():414-420. PubMed ID: 25553573
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synergistic effect on co-pyrolysis of rice husk and sewage sludge by thermal behavior, kinetics, thermodynamic parameters and artificial neural network.
    Naqvi SR; Hameed Z; Tariq R; Taqvi SA; Ali I; Niazi MBK; Noor T; Hussain A; Iqbal N; Shahbaz M
    Waste Manag; 2019 Feb; 85():131-140. PubMed ID: 30803566
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermal pyrolysis characteristics and kinetics of hemicellulose isolated from Camellia Oleifera Shell.
    Lei Z; Wang S; Fu H; Gao W; Wang B; Zeng J; Xu J
    Bioresour Technol; 2019 Jun; 282():228-235. PubMed ID: 30870688
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis.
    Kaur R; Gera P; Jha MK; Bhaskar T
    Bioresour Technol; 2018 Feb; 250():422-428. PubMed ID: 29195154
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Generalized kinetics for thermal degradation and melt rheology for poly (lactic acid)/poly (butylene succinate)/functionalized chitosan based reactive nanobiocomposite.
    Monika ; Mulchandani N; Katiyar V
    Int J Biol Macromol; 2019 Dec; 141():831-842. PubMed ID: 31513852
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetics Study of Polypropylene Pyrolysis by Non-Isothermal Thermogravimetric Analysis.
    Dubdub I
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676321
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pyrolysis of banana leaves biomass: Physico-chemical characterization, thermal decomposition behavior, kinetic and thermodynamic analyses.
    Singh RK; Pandey D; Patil T; Sawarkar AN
    Bioresour Technol; 2020 Aug; 310():123464. PubMed ID: 32388356
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pyrolysis of Mixed Plastic Waste: I. Kinetic Study.
    Dubdub I; Al-Yaari M
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33142917
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pyrolytic Behavior of Polyvinyl Chloride: Kinetics, Mechanisms, Thermodynamics, and Artificial Neural Network Application.
    Al-Yaari M; Dubdub I
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34960910
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Study of the Synergetic Effect of Co-Pyrolysis of Lignite and High-Density Polyethylene Aiming to Improve Utilization of Low-Rank Coal.
    Kojić I; Bechtel A; Aleksić N; Životić D; Trifunović S; Gajica G; Stojanović K
    Polymers (Basel); 2021 Feb; 13(5):. PubMed ID: 33671005
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design of a pyrolyser model for the conversion of thermoplastics into fuels.
    Dassi Djoukouo NH; Djousse BMK; Doukeng HG; Egbe DAM; Tangka JK; Tchoffo M
    Heliyon; 2024 Mar; 10(5):e26702. PubMed ID: 38463835
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel pseudo-multicomponent isoconversional approach for the estimation of kinetic and thermodynamic parameters of potato stalk thermal degradation.
    Nawaz A; Kumar P
    Bioresour Technol; 2023 May; 376():128846. PubMed ID: 36898560
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Production and Analysis of the Physicochemical Properties of the Pyrolytic Oil Obtained from Pyrolysis of Different Thermoplastics and Plastic Mixtures.
    Palmay P; Haro C; Huacho I; Barzallo D; Bruno JC
    Molecules; 2022 May; 27(10):. PubMed ID: 35630764
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synergistic Effects and Kinetic Analysis in Co-Pyrolysis of Peanut Shells and Polypropylene.
    Huang Z; Wu J; Yang T; Wang Z; Zhang T; Gao F; Yang L; Li G
    Foods; 2024 Apr; 13(8):. PubMed ID: 38672863
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermal Degradation, Mechanical Properties and Morphology of Wheat Straw Flour Filled Recycled Thermoplastic Composites.
    Mengeloglu F; Karakus K
    Sensors (Basel); 2008 Jan; 8(1):500-519. PubMed ID: 27879719
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synergistic interactions between sewage sludge, polypropylene, and high-density polyethylene during co-pyrolysis: An investigation based on iso-conversional model-free methods and master plot analysis.
    Ling CCY; Li SFY
    J Hazard Mater; 2023 Aug; 455():131600. PubMed ID: 37182467
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis.
    Jeguirim M; Trouvé G
    Bioresour Technol; 2009 Sep; 100(17):4026-31. PubMed ID: 19362825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.