These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 36812162)
1. Radical Transport Facilitated by a Proton Transfer Network at the Subunit Interface of Ribonucleotide Reductase. Cui C; Song DY; Drennan CL; Stubbe J; Nocera DG J Am Chem Soc; 2023 Mar; 145(9):5145-5154. PubMed ID: 36812162 [TBL] [Abstract][Full Text] [Related]
2. Reversible, long-range radical transfer in E. coli class Ia ribonucleotide reductase. Minnihan EC; Nocera DG; Stubbe J Acc Chem Res; 2013 Nov; 46(11):2524-35. PubMed ID: 23730940 [TBL] [Abstract][Full Text] [Related]
3. A >200 meV Uphill Thermodynamic Landscape for Radical Transport in Escherichia coli Ribonucleotide Reductase Determined Using Fluorotyrosine-Substituted Enzymes. Ravichandran KR; Taguchi AT; Wei Y; Tommos C; Nocera DG; Stubbe J J Am Chem Soc; 2016 Oct; 138(41):13706-13716. PubMed ID: 28068088 [TBL] [Abstract][Full Text] [Related]
4. Gated Proton Release during Radical Transfer at the Subunit Interface of Ribonucleotide Reductase. Cui C; Greene BL; Kang G; Drennan CL; Stubbe J; Nocera DG J Am Chem Soc; 2021 Jan; 143(1):176-183. PubMed ID: 33353307 [TBL] [Abstract][Full Text] [Related]
5. Glutamate 350 Plays an Essential Role in Conformational Gating of Long-Range Radical Transport in Escherichia coli Class Ia Ribonucleotide Reductase. Ravichandran K; Minnihan EC; Lin Q; Yokoyama K; Taguchi AT; Shao J; Nocera DG; Stubbe J Biochemistry; 2017 Feb; 56(6):856-868. PubMed ID: 28103007 [TBL] [Abstract][Full Text] [Related]
6. Hydrogen bond network between amino acid radical intermediates on the proton-coupled electron transfer pathway of E. coli α2 ribonucleotide reductase. Nick TU; Lee W; Kossmann S; Neese F; Stubbe J; Bennati M J Am Chem Soc; 2015 Jan; 137(1):289-98. PubMed ID: 25516424 [TBL] [Abstract][Full Text] [Related]
7. Kinetics of hydrogen atom abstraction from substrate by an active site thiyl radical in ribonucleotide reductase. Olshansky L; Pizano AA; Wei Y; Stubbe J; Nocera DG J Am Chem Soc; 2014 Nov; 136(46):16210-6. PubMed ID: 25353063 [TBL] [Abstract][Full Text] [Related]
8. Spectroscopic Evidence for a H Bond Network at Y Nick TU; Ravichandran KR; Stubbe J; Kasanmascheff M; Bennati M Biochemistry; 2017 Jul; 56(28):3647-3656. PubMed ID: 28640584 [TBL] [Abstract][Full Text] [Related]
9. Photochemical Rescue of a Conformationally Inactivated Ribonucleotide Reductase. Greene BL; Stubbe J; Nocera DG J Am Chem Soc; 2018 Nov; 140(46):15744-15752. PubMed ID: 30347141 [TBL] [Abstract][Full Text] [Related]
10. Modulation of Y356 photooxidation in E. coli class Ia ribonucleotide reductase by Y731 across the α2:β2 interface. Pizano AA; Olshansky L; Holder PG; Stubbe J; Nocera DG J Am Chem Soc; 2013 Sep; 135(36):13250-3. PubMed ID: 23927429 [TBL] [Abstract][Full Text] [Related]
11. Photochemical Generation of a Tryptophan Radical within the Subunit Interface of Ribonucleotide Reductase. Olshansky L; Greene BL; Finkbeiner C; Stubbe J; Nocera DG Biochemistry; 2016 Jun; 55(23):3234-40. PubMed ID: 27159163 [TBL] [Abstract][Full Text] [Related]
12. Conformationally Dynamic Radical Transfer within Ribonucleotide Reductase. Greene BL; Taguchi AT; Stubbe J; Nocera DG J Am Chem Soc; 2017 Nov; 139(46):16657-16665. PubMed ID: 29037038 [TBL] [Abstract][Full Text] [Related]
13. Conformational Motions and Water Networks at the α/β Interface in Reinhardt CR; Li P; Kang G; Stubbe J; Drennan CL; Hammes-Schiffer S J Am Chem Soc; 2020 Aug; 142(32):13768-13778. PubMed ID: 32631052 [TBL] [Abstract][Full Text] [Related]
14. Reverse Electron Transfer Completes the Catalytic Cycle in a 2,3,5-Trifluorotyrosine-Substituted Ribonucleotide Reductase. Ravichandran KR; Minnihan EC; Wei Y; Nocera DG; Stubbe J J Am Chem Soc; 2015 Nov; 137(45):14387-95. PubMed ID: 26492582 [TBL] [Abstract][Full Text] [Related]
15. Meyer A; Kehl A; Cui C; Reichardt FAK; Hecker F; Funk LM; Ghosh MK; Pan KT; Urlaub H; Tittmann K; Stubbe J; Bennati M J Am Chem Soc; 2022 Jun; 144(25):11270-11282. PubMed ID: 35652913 [TBL] [Abstract][Full Text] [Related]
16. Turning on ribonucleotide reductase by light-initiated amino acid radical generation. Chang MC; Yee CS; Stubbe J; Nocera DG Proc Natl Acad Sci U S A; 2004 May; 101(18):6882-7. PubMed ID: 15123822 [TBL] [Abstract][Full Text] [Related]
17. PELDOR spectroscopy with DOPA-beta2 and NH2Y-alpha2s: distance measurements between residues involved in the radical propagation pathway of E. coli ribonucleotide reductase. Seyedsayamdost MR; Chan CT; Mugnaini V; Stubbe J; Bennati M J Am Chem Soc; 2007 Dec; 129(51):15748-9. PubMed ID: 18047343 [TBL] [Abstract][Full Text] [Related]
18. Re(bpy)(CO)3CN as a probe of conformational flexibility in a photochemical ribonucleotide reductase. Reece SY; Lutterman DA; Seyedsayamdost MR; Stubbe J; Nocera DG Biochemistry; 2009 Jun; 48(25):5832-8. PubMed ID: 19402704 [TBL] [Abstract][Full Text] [Related]
19. Site-specific insertion of 3-aminotyrosine into subunit alpha2 of E. coli ribonucleotide reductase: direct evidence for involvement of Y730 and Y731 in radical propagation. Seyedsayamdost MR; Xie J; Chan CT; Schultz PG; Stubbe J J Am Chem Soc; 2007 Dec; 129(48):15060-71. PubMed ID: 17990884 [TBL] [Abstract][Full Text] [Related]
20. Glutamate Mediates Proton-Coupled Electron Transfer Between Tyrosines 730 and 731 in Reinhardt CR; Sayfutyarova ER; Zhong J; Hammes-Schiffer S J Am Chem Soc; 2021 Apr; 143(16):6054-6059. PubMed ID: 33856807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]