These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 36812217)

  • 1. Experimental environment improves the reliability of short-latency afferent inhibition.
    Ramdeo KR; Rehsi RS; Foglia SD; Turco CV; Toepp SL; Nelson AJ
    PLoS One; 2023; 18(2):e0281867. PubMed ID: 36812217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The distribution and reliability of TMS-evoked short- and long-latency afferent interactions.
    Toepp SL; Turco CV; Rehsi RS; Nelson AJ
    PLoS One; 2021; 16(12):e0260663. PubMed ID: 34905543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reliability of transcranial magnetic stimulation measures of afferent inhibition.
    Turco CV; Pesevski A; McNicholas PD; Beaulieu LD; Nelson AJ
    Brain Res; 2019 Nov; 1723():146394. PubMed ID: 31425680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short-and long-latency afferent inhibition of the human leg motor cortex by H-reflex subthreshold electrical stimulation at the popliteal fossa.
    Kato T; Sasaki A; Nakazawa K
    Exp Brain Res; 2023 Jan; 241(1):249-261. PubMed ID: 36481937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological sex differences in afferent-mediated inhibition of motor responses evoked by TMS.
    Turco CV; Rehsi RS; Locke MB; Nelson AJ
    Brain Res; 2021 Nov; 1771():147657. PubMed ID: 34509460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of water immersion on short- and long-latency afferent inhibition, short-interval intracortical inhibition, and intracortical facilitation.
    Sato D; Yamashiro K; Yoshida T; Onishi H; Shimoyama Y; Maruyama A
    Clin Neurophysiol; 2013 Sep; 124(9):1846-52. PubMed ID: 23688919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Association of short- and long-latency afferent inhibition with human behavior.
    Turco CV; Toepp SL; Foglia SD; Dans PW; Nelson AJ
    Clin Neurophysiol; 2021 Jul; 132(7):1462-1480. PubMed ID: 34030051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-latency afferent inhibition determined by the sensory afferent volley.
    Bailey AZ; Asmussen MJ; Nelson AJ
    J Neurophysiol; 2016 Aug; 116(2):637-44. PubMed ID: 27226451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of cutaneous and proprioceptive inputs in sensorimotor integration and plasticity occurring in the facial primary motor cortex.
    Pilurzi G; Ginatempo F; Mercante B; Cattaneo L; Pavesi G; Rothwell JC; Deriu F
    J Physiol; 2020 Feb; 598(4):839-851. PubMed ID: 31876950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the effects of dopamine on short- and long-latency afferent inhibition.
    Foglia SD; Adams FC; Ramdeo KR; Drapeau CC; Turco CV; Tarnopolsky M; Ma J; Nelson AJ
    J Physiol; 2024 May; 602(10):2253-2264. PubMed ID: 38638084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of long-latency afferent inhibition by the amplitude of sensory afferent volley.
    Turco CV; El-Sayes J; Fassett HJ; Chen R; Nelson AJ
    J Neurophysiol; 2017 Jul; 118(1):610-618. PubMed ID: 28446579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human brain cortical correlates of short-latency afferent inhibition: a combined EEG-TMS study.
    Ferreri F; Ponzo D; Hukkanen T; Mervaala E; Könönen M; Pasqualetti P; Vecchio F; Rossini PM; Määttä S
    J Neurophysiol; 2012 Jul; 108(1):314-23. PubMed ID: 22457460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between short latency afferent inhibition and long interval intracortical inhibition.
    Udupa K; Ni Z; Gunraj C; Chen R
    Exp Brain Res; 2009 Nov; 199(2):177-83. PubMed ID: 19730839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined Peripheral Nerve Stimulation and Controllable Pulse Parameter Transcranial Magnetic Stimulation to Probe Sensorimotor Control and Learning.
    Graham KR; Hayes KD; Meehan SK
    J Vis Exp; 2023 Apr; (194):. PubMed ID: 37154553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of the Direction and Magnitude of Hebbian Plasticity in Human Motor Cortex by Stimulus Intensity and Concurrent Inhibition.
    Cash RFH; Jegatheeswaran G; Ni Z; Chen R
    Brain Stimul; 2017; 10(1):83-90. PubMed ID: 27615792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short- and long-latency afferent inhibition; uses, mechanisms and influencing factors.
    Turco CV; El-Sayes J; Savoie MJ; Fassett HJ; Locke MB; Nelson AJ
    Brain Stimul; 2018; 11(1):59-74. PubMed ID: 28964754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-frequency oscillations-based precise temporal resolution of short latency afferent inhibition in the human brain.
    Motolese F; Rossi M; Capone F; Cruciani A; Musumeci G; Manzo M; Pilato F; Di Pino G; Di Lazzaro V
    Clin Neurophysiol; 2022 Dec; 144():135-141. PubMed ID: 36210268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of lorazepam and baclofen on short- and long-latency afferent inhibition.
    Turco CV; El-Sayes J; Locke MB; Chen R; Baker S; Nelson AJ
    J Physiol; 2018 Nov; 596(21):5267-5280. PubMed ID: 30192388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Verbal working memory modulates afferent circuits in motor cortex.
    Suzuki LY; Meehan SK
    Eur J Neurosci; 2018 Nov; 48(10):3117-3125. PubMed ID: 30218611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tactile sensorimotor training does not alter short- and long-latency afferent inhibition.
    Adams FC; Pickersgill JW; Turco CV; Foglia SD; Toepp SL; Rehsi RR; Ramdeo KR; Salman M; Nelson AJ
    Neuroreport; 2023 Feb; 34(3):123-127. PubMed ID: 36719836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.