These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 36812448)

  • 1. Nanoscale Electron Transfer Variations at Electrocatalyst-Electrolyte Interfaces Resolved by
    Munz M; Poon J; Frandsen W; Cuenya BR; Kley CS
    J Am Chem Soc; 2023 Mar; 145(9):5242-5251. PubMed ID: 36812448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unveiling Nanoscale Heterogeneities at the Bias-Dependent Gold-Electrolyte Interface.
    Antony LSD; Monin L; Aarts M; Alarcon-Llado E
    J Am Chem Soc; 2024 May; 146(19):12933-12940. PubMed ID: 38591960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Electrochemical Atomic Force Microscopy: From Interfaces to Interphases.
    Wang WW; Yan H; Gu Y; Yan J; Mao BW
    Annu Rev Anal Chem (Palo Alto Calif); 2024 Jul; 17(1):103-126. PubMed ID: 38603469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale Measurements of Charge Transfer at Cocatalyst/Semiconductor Interfaces in BiVO
    Shen M; Kaufman AJ; Huang J; Price C; Boettcher SW
    Nano Lett; 2022 Dec; 22(23):9493-9499. PubMed ID: 36382908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Situ STEM-EELS Observation of Nanoscale Interfacial Phenomena in All-Solid-State Batteries.
    Wang Z; Santhanagopalan D; Zhang W; Wang F; Xin HL; He K; Li J; Dudney N; Meng YS
    Nano Lett; 2016 Jun; 16(6):3760-7. PubMed ID: 27140196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrolyte-Electrocatalyst Interfacial Effects of Polymeric Materials for Tandem CO
    Hamilton ST; Kelly M; Smith WA; Park AA
    ACS Appl Mater Interfaces; 2024 Aug; 16(32):42021-42033. PubMed ID: 39087768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-Space Charge Density Profiling of Electrode-Electrolyte Interfaces with Angstrom Depth Resolution.
    Bonagiri LKS; Panse KS; Zhou S; Wu H; Aluru NR; Zhang Y
    ACS Nano; 2022 Nov; 16(11):19594-19604. PubMed ID: 36351178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential-Dependent Morphology of Copper Catalysts During CO
    Simon GH; Kley CS; Roldan Cuenya B
    Angew Chem Int Ed Engl; 2021 Feb; 60(5):2561-2568. PubMed ID: 33035401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale lubrication of ionic surfaces controlled via a strong electric field.
    Strelcov E; Kumar R; Bocharova V; Sumpter BG; Tselev A; Kalinin SV
    Sci Rep; 2015 Jan; 5():8049. PubMed ID: 25623295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Nanoscale Redox Mapping Using Tip-Enhanced Raman Spectroscopy.
    Kang G; Yang M; Mattei MS; Schatz GC; Van Duyne RP
    Nano Lett; 2019 Mar; 19(3):2106-2113. PubMed ID: 30763517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced Spatiotemporal Voltammetric Techniques for Kinetic Analysis and Active Site Determination in the Electrochemical Reduction of CO
    Guo SX; Bentley CL; Kang M; Bond AM; Unwin PR; Zhang J
    Acc Chem Res; 2022 Feb; 55(3):241-251. PubMed ID: 35020363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interface ionic liquid(s)/electrode(s): in situ STM and AFM measurements.
    Endres F; Borisenko N; El Abedin SZ; Hayes R; Atkin R
    Faraday Discuss; 2012; 154():221-33; discussion 313-33, 465-71. PubMed ID: 22455022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-Range Electrification of an Air/Electrolyte Interface and Probing Potential of Zero Charge by Conductive Amplitude-Modulated Atomic Force Microscopy.
    Dinh TD; Jang JW; Hwang S
    Anal Chem; 2023 Feb; 95(5):2901-2908. PubMed ID: 36691706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic force microscopy: Emerging illuminated and operando techniques for solar fuel research.
    Yu W; Fu HJ; Mueller T; Brunschwig BS; Lewis NS
    J Chem Phys; 2020 Jul; 153(2):020902. PubMed ID: 32668946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial Stability of Li Metal-Solid Electrolyte Elucidated via in Situ Electron Microscopy.
    Ma C; Cheng Y; Yin K; Luo J; Sharafi A; Sakamoto J; Li J; More KL; Dudney NJ; Chi M
    Nano Lett; 2016 Nov; 16(11):7030-7036. PubMed ID: 27709954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure- and Electrolyte-Sensitivity in CO
    ArĂ¡n-Ais RM; Gao D; Roldan Cuenya B
    Acc Chem Res; 2018 Nov; 51(11):2906-2917. PubMed ID: 30335937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping the Potential of Zero Charge and Electrocatalytic Activity of Metal-Electrolyte Interface via a Grain-by-Grain Approach.
    Wang Y; Gordon E; Ren H
    Anal Chem; 2020 Feb; 92(3):2859-2865. PubMed ID: 31941268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic dynamics of electrified solid-liquid interfaces in liquid-cell TEM.
    Zhang Q; Song Z; Sun X; Liu Y; Wan J; Betzler SB; Zheng Q; Shangguan J; Bustillo KC; Ercius P; Narang P; Huang Y; Zheng H
    Nature; 2024 Jun; 630(8017):643-647. PubMed ID: 38898295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ infrared nanospectroscopy of the local processes at the Li/polymer electrolyte interface.
    He X; Larson JM; Bechtel HA; Kostecki R
    Nat Commun; 2022 Mar; 13(1):1398. PubMed ID: 35301308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissolution and Precipitation Dynamics at Environmental Mineral Interfaces Imaged by In Situ Atomic Force Microscopy.
    Wang L; Putnis CV
    Acc Chem Res; 2020 Jun; 53(6):1196-1205. PubMed ID: 32441501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.