BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36812814)

  • 1. Effective recovery of rare earth from (bio)leaching solution through precipitation of rare earth-citrate complex.
    Meng X; Zhao H; Zhao Y; Shen L; Gu G; Qiu G
    Water Res; 2023 Apr; 233():119752. PubMed ID: 36812814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heap leaching of ion adsorption rare earth ores and REEs recovery from leachate with lixiviant regeneration.
    Meng X; Zhao H; Zhao Y; Shen L; Gu G; Qiu G
    Sci Total Environ; 2023 Nov; 898():165417. PubMed ID: 37429479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of various ligands on the selective precipitation of critical and rare earth elements from acid mine drainage.
    Hassas BV; Rezaee M; Pisupati SV
    Chemosphere; 2021 Oct; 280():130684. PubMed ID: 34162080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of rare earths from spent NdFeB magnets of wind turbine: Leaching and kinetic aspects.
    Kumari A; Sinha MK; Pramanik S; Sahu SK
    Waste Manag; 2018 May; 75():486-498. PubMed ID: 29397277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The enrichment of rare earth from magnesium salt leaching solution of ion-adsorbed type deposit: A waste-free process for removing impurities.
    Li L; Liu C; Zhang H; Huang B; Luo B; Bie C; Sun X
    J Environ Manage; 2022 May; 310():114743. PubMed ID: 35217448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative toxicity of stable rare earth compounds. I. Effect of citrate complexing on stable rare earth chloride toxicity.
    GARST EL; GRACA JG; LOWRY WE
    AMA Arch Ind Health; 1957 Jan; 15(1):9-14. PubMed ID: 13393806
    [No Abstract]   [Full Text] [Related]  

  • 7. Selective preparation of samarium phosphates from transition metal mixed solution by two-step precipitation.
    Onoda H; Iinuma A
    Environ Technol; 2023 Sep; 44(22):3459-3465. PubMed ID: 35388738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavior and mechanism of low-concentration rare earth ions precipitated by the microbial humic-like acids.
    Wang J; Li H; Tang L; Zhong C; Liu Y; Lu L; Qiu T; Liu H
    Environ Sci Pollut Res Int; 2020 Jun; 27(17):21965-21976. PubMed ID: 32285381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioleaching of rare earth elements from monazite sand.
    Brisson VL; Zhuang WQ; Alvarez-Cohen L
    Biotechnol Bioeng; 2016 Feb; 113(2):339-48. PubMed ID: 26332985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of Sulfate Ions from Calcium Oxide Precipitation Enrichment of a Rare Earth Leaching Liquor by Stirring Washing with Sodium Hydroxide.
    He Q; Lai F; Lai A; Qiu J; Xiao Y
    ACS Omega; 2021 Mar; 6(8):5209-5220. PubMed ID: 33681562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mixed rare earth metals production from surface soil in Idaho, USA: Techno-economic analysis and greenhouse gas emission assessment.
    Brown RM; Struhs E; Mirkouei A; Raja K; Reed D
    Sci Total Environ; 2024 Sep; 944():173945. PubMed ID: 38876346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leaching of rare earth elements and base metals from spent NiMH batteries using gluconate and its potential bio-oxidation products.
    Rasoulnia P; Barthen R; Puhakka JA; Lakaniemi AM
    J Hazard Mater; 2021 Jul; 414():125564. PubMed ID: 33684819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An eco-friendly and high-yield extraction of rare earth from the leaching solution of ion adsorbed minerals.
    Yu G; Zhang H; Tian Z; Gao Y; Fu X; Sun X
    J Hazard Mater; 2024 Jul; 473():134633. PubMed ID: 38772109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolomic Analysis Reveals Contributions of Citric and Citramalic Acids to Rare Earth Bioleaching by a
    Brisson VL; Zhuang WQ; Alvarez-Cohen L
    Front Microbiol; 2019; 10():3008. PubMed ID: 31993037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery of rare earth elements from waste phosphors via alkali fusion roasting and controlled potential reduction leaching.
    Xie B; Liu C; Wei B; Wang R; Ren R
    Waste Manag; 2023 May; 163():43-51. PubMed ID: 37001311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological leaching of rare earth elements.
    Mowafy AM
    World J Microbiol Biotechnol; 2020 Apr; 36(4):61. PubMed ID: 32285218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concomitant Leaching and Electrochemical Extraction of Rare Earth Elements from Monazite.
    Maes S; Zhuang WQ; Rabaey K; Alvarez-Cohen L; Hennebel T
    Environ Sci Technol; 2017 Feb; 51(3):1654-1661. PubMed ID: 28056169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ZnCl
    Ding A; Liu C; Zhang X; Lei L; Xiao C
    Environ Sci Technol; 2022 Apr; 56(7):4404-4412. PubMed ID: 35286072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaching of rare earth elements from phosphogypsum.
    Lütke SF; Oliveira MLS; Waechter SR; Silva LFO; Cadaval TRS; Duarte FA; Dotto GL
    Chemosphere; 2022 Aug; 301():134661. PubMed ID: 35452647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioleaching of metals from WEEE shredding dust.
    Marra A; Cesaro A; Rene ER; Belgiorno V; Lens PNL
    J Environ Manage; 2018 Mar; 210():180-190. PubMed ID: 29353112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.