These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 36812854)
1. Distinct coking depth in steam reforming of oxygen-containing organics and hydrocarbons. Bkangmo Kontchouo FM; Zhang L; Zhang S; Hu G; Hu X J Colloid Interface Sci; 2023 Jun; 639():385-400. PubMed ID: 36812854 [TBL] [Abstract][Full Text] [Related]
2. Catalytic reforming of toluene as tar model compound: effect of Ce and Ce-Mg promoter using Ni/olivine catalyst. Zhang R; Wang H; Hou X Chemosphere; 2014 Feb; 97():40-6. PubMed ID: 24275153 [TBL] [Abstract][Full Text] [Related]
3. Appraisal of agroforestry biomass wastes for hydrogen production by an integrated process of fast pyrolysis and in line steam reforming. Arregi A; Santamaria L; Lopez G; Olazar M; Bilbao J; Artetxe M; Amutio M J Environ Manage; 2023 Dec; 347():119071. PubMed ID: 37801944 [TBL] [Abstract][Full Text] [Related]
4. Steam Reforming of Model Bio-Oil Aqueous Fraction Using Ni-(Cu, Co, Cr)/SBA-15 Catalysts. Calles JA; Carrero A; Vizcaíno AJ; García-Moreno L; Megía PJ Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30691053 [TBL] [Abstract][Full Text] [Related]
5. Arming wood carbon with carbon-coated mesoporous nickel-silica nanolayer as monolithic composite catalyst for steam reforming of toluene. Xu H; Shen Z; Zhang S; Chen G; Pan H; Ge Z; Zheng Z; Wang Y; Wang Y; Li X J Colloid Interface Sci; 2021 Oct; 599():650-660. PubMed ID: 33979747 [TBL] [Abstract][Full Text] [Related]
6. A highly active and coke-resistant steam reforming catalyst comprising uniform nickel-iron alloy nanoparticles. Koike M; Li D; Nakagawa Y; Tomishige K ChemSusChem; 2012 Dec; 5(12):2312-4. PubMed ID: 23135797 [TBL] [Abstract][Full Text] [Related]
7. Hydrogen Production by Sorption Enhanced Steam Reforming (SESR) of Biomass in a Fluidised-Bed Reactor Using Combined Multifunctional Particles. Clough PT; Boot-Handford ME; Zheng L; Zhang Z; Fennell PS Materials (Basel); 2018 May; 11(5):. PubMed ID: 29883427 [TBL] [Abstract][Full Text] [Related]
8. Long-term evaluation of palm oil mill effluent (POME) steam reforming over lanthanum-based perovskite oxides. Cheng YW; Chong CC; Cheng CK; Wang CH; Ng KH; Witoon T; Lam MK; Lim JW J Environ Manage; 2024 Feb; 351():119919. PubMed ID: 38157572 [TBL] [Abstract][Full Text] [Related]
9. Mechanistic aspects of the ethanol steam reforming reaction for hydrogen production on Pt, Ni, and PtNi catalysts supported on gamma-Al2O3. Sanchez-Sanchez MC; Navarro Yerga RM; Kondarides DI; Verykios XE; Fierro JL J Phys Chem A; 2010 Mar; 114(11):3873-82. PubMed ID: 19824680 [TBL] [Abstract][Full Text] [Related]
10. Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane. Han JW; Kim C; Park JS; Lee H ChemSusChem; 2014 Feb; 7(2):451-6. PubMed ID: 24402833 [TBL] [Abstract][Full Text] [Related]
11. Global Vision of the Reaction and Deactivation Routes in the Ethanol Steam Reforming on a Catalyst Derived from a Ni-Al Spinel. Iglesias-Vázquez S; Valecillos J; Remiro A; Valle B; Bilbao J; Gayubo AG Energy Fuels; 2024 Apr; 38(8):7033-7048. PubMed ID: 38654764 [TBL] [Abstract][Full Text] [Related]
12. Oxygen Vacancy Induced Strong Metal-Support Interactions on Ni/Ce Lin F; Chen Z; Gong H; Wang X; Chen L; Yu H Langmuir; 2023 Mar; 39(12):4495-4506. PubMed ID: 36926903 [TBL] [Abstract][Full Text] [Related]
13. Catalytic Steam Reforming of Biomass-Derived Acetic Acid over Two Supported Ni Catalysts for Hydrogen-Rich Syngas Production. Fu P; Zhang A; Luo S; Yi W; Hu S; Zhang Y ACS Omega; 2019 Aug; 4(8):13585-13593. PubMed ID: 31460488 [TBL] [Abstract][Full Text] [Related]
14. Effect of process conditions on the steam reforming of ethanol with a nano-Ni/SiO2 catalyst. Wu C; Williams PT Environ Technol; 2012; 33(4-6):631-8. PubMed ID: 22629637 [TBL] [Abstract][Full Text] [Related]
15. Two-stage steam gasification of waste biomass in fluidized bed at low temperature: parametric investigations and performance optimization. Xiao X; Meng X; Le DD; Takarada T Bioresour Technol; 2011 Jan; 102(2):1975-81. PubMed ID: 20889337 [TBL] [Abstract][Full Text] [Related]
16. Tar steam reforming for synthesis gas production over Ni-based on ceria/zirconia and La Khajonvittayakul C; Tongnan V; Namo N; Phonbubpha C; Laosiripojana N; Hartley M; Hartley UW Chemosphere; 2021 Aug; 277():130280. PubMed ID: 33784554 [TBL] [Abstract][Full Text] [Related]
17. The Influence of Promoter on Ni(15)/La(5)/γ-Al2O3 Catalyst in CO2-Steam Reforming of Methane to Syngas at High Pressure. Ok HJ; Park MH; Moon DJ; Kim JH; Park NC; Kim YC J Nanosci Nanotechnol; 2015 Jan; 15(1):449-53. PubMed ID: 26328379 [TBL] [Abstract][Full Text] [Related]
18. Hydrogen production from glucose and sorbitol by sorption-enhanced steam reforming: challenges and promises. He L; Chen D ChemSusChem; 2012 Mar; 5(3):587-95. PubMed ID: 22378630 [TBL] [Abstract][Full Text] [Related]
19. Integration of steam gasification and catalytic reforming of lignocellulosic biomass as a strategy to improve syngas quality and pollutants removal. Quiroga E; Cifuentes B; Moltó J; Ortuño N; Conesa J; Davó-Quiñonero A; Cobo M Waste Manag; 2022 Jun; 147():48-59. PubMed ID: 35623261 [TBL] [Abstract][Full Text] [Related]
20. Ru-Ni bimetallic catalysts for steam reforming of xylene: effects of active metals and calcination temperature of the support. Pu J; Wang H; Suzuki M; Qian EW RSC Adv; 2021 Jun; 11(33):20570-20579. PubMed ID: 35479912 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]