BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36812958)

  • 1. Disruption of mitochondrial bioenergetics and calcium homeostasis by phytanic acid in the heart: Potential relevance for the cardiomyopathy in Refsum disease.
    Zemniaçak ÂB; Roginski AC; Ribeiro RT; Bender JG; Marschner RA; Wajner SM; Wajner M; Amaral AU
    Biochim Biophys Acta Bioenerg; 2023 Apr; 1864(2):148961. PubMed ID: 36812958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytanic acid disturbs mitochondrial homeostasis in heart of young rats: a possible pathomechanism of cardiomyopathy in Refsum disease.
    Grings M; Tonin AM; Knebel LA; Zanatta A; Moura AP; Filho CS; Wajner M; Leipnitz G
    Mol Cell Biochem; 2012 Jul; 366(1-2):335-43. PubMed ID: 22527938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolite accumulation in VLCAD deficiency markedly disrupts mitochondrial bioenergetics and Ca
    Cecatto C; Amaral AU; da Silva JC; Wajner A; Schimit MOV; da Silva LHR; Wajner SM; Zanatta Â; Castilho RF; Wajner M
    FEBS J; 2018 Apr; 285(8):1437-1455. PubMed ID: 29476646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Refsum disease marker phytanic acid, a branched chain fatty acid, affects Ca2+ homeostasis and mitochondria, and reduces cell viability in rat hippocampal astrocytes.
    Kahlert S; Schönfeld P; Reiser G
    Neurobiol Dis; 2005 Feb; 18(1):110-8. PubMed ID: 15649701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deregulation of mitochondrial functions provoked by long-chain fatty acid accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial permeability transition deficiencies in rat heart--mitochondrial permeability transition pore opening as a potential contributing pathomechanism of cardiac alterations in these disorders.
    Cecatto C; Hickmann FH; Rodrigues MD; Amaral AU; Wajner M
    FEBS J; 2015 Dec; 282(24):4714-26. PubMed ID: 26408230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Marked inhibition of Na+, K(+)- ATPase activity and the respiratory chain by phytanic acid in cerebellum from young rats: possible underlying mechanisms of cerebellar ataxia in Refsum disease.
    Busanello EN; Zanatta Â; Tonin AM; Viegas CM; Vargas CR; Leipnitz G; Ribeiro CA; Wajner M
    J Bioenerg Biomembr; 2013 Feb; 45(1-2):137-44. PubMed ID: 23151916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of mitochondrial homeostasis by phytanic acid in cerebellum of young rats.
    Busanello EN; Amaral AU; Tonin AM; Zanatta A; Viegas CM; Vargas CR; Wajner M
    Cerebellum; 2013 Jun; 12(3):362-9. PubMed ID: 23081695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro evidence that phytanic acid compromises Na(+),K(+)-ATPase activity and the electron flow through the respiratory chain in brain cortex from young rats.
    Busanello EN; Viegas CM; Moura AP; Tonin AM; Grings M; Vargas CR; Wajner M
    Brain Res; 2010 Sep; 1352():231-8. PubMed ID: 20624373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disturbance of bioenergetics and calcium homeostasis provoked by metabolites accumulating in propionic acidemia in heart mitochondria of developing rats.
    Roginski AC; Wajner A; Cecatto C; Wajner SM; Castilho RF; Wajner M; Amaral AU
    Biochim Biophys Acta Mol Basis Dis; 2020 May; 1866(5):165682. PubMed ID: 31931102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of toxicity of the branched-chain fatty acid phytanic acid, a marker of Refsum disease, in astrocytes involves mitochondrial impairment.
    Reiser G; Schönfeld P; Kahlert S
    Int J Dev Neurosci; 2006; 24(2-3):113-22. PubMed ID: 16386870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In brain mitochondria the branched-chain fatty acid phytanic acid impairs energy transduction and sensitizes for permeability transition.
    Schönfeld P; Kahlert S; Reiser G
    Biochem J; 2004 Oct; 383(Pt 1):121-8. PubMed ID: 15198638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of the branched-chain fatty acids pristanic acid and Refsum disease-associated phytanic acid on mitochondrial functions and calcium regulation of hippocampal neurons, astrocytes, and oligodendrocytes.
    Rönicke S; Kruska N; Kahlert S; Reiser G
    Neurobiol Dis; 2009 Nov; 36(2):401-10. PubMed ID: 19703563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotenone-like action of the branched-chain phytanic acid induces oxidative stress in mitochondria.
    Schönfeld P; Reiser G
    J Biol Chem; 2006 Mar; 281(11):7136-42. PubMed ID: 16410242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial bioenergetics deregulation caused by long-chain 3-hydroxy fatty acids accumulating in LCHAD and MTP deficiencies in rat brain: a possible role of mPTP opening as a pathomechanism in these disorders?
    Tonin AM; Amaral AU; Busanello EN; Gasparotto J; Gelain DP; Gregersen N; Wajner M
    Biochim Biophys Acta; 2014 Sep; 1842(9):1658-67. PubMed ID: 24946182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive nitrogen species mediate oxidative stress and astrogliosis provoked by in vivo administration of phytanic acid in cerebellum of adolescent rats: A potential contributing pathomechanism of cerebellar injury in peroxisomal disorders.
    Borges CG; Canani CR; Fernandes CG; Zanatta Â; Seminotti B; Ribeiro CA; Leipnitz G; Vargas CR; Wajner M
    Neuroscience; 2015 Sep; 304():122-32. PubMed ID: 26188285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. cis-4-Decenoic and decanoic acids impair mitochondrial energy, redox and Ca(2+) homeostasis and induce mitochondrial permeability transition pore opening in rat brain and liver: Possible implications for the pathogenesis of MCAD deficiency.
    Amaral AU; Cecatto C; da Silva JC; Wajner A; Godoy KDS; Ribeiro RT; Wajner M
    Biochim Biophys Acta; 2016 Sep; 1857(9):1363-1372. PubMed ID: 27240720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncoupling, metabolic inhibition and induction of mitochondrial permeability transition in rat liver mitochondria caused by the major long-chain hydroxyl monocarboxylic fatty acids accumulating in LCHAD deficiency.
    Hickmann FH; Cecatto C; Kleemann D; Monteiro WO; Castilho RF; Amaral AU; Wajner M
    Biochim Biophys Acta; 2015; 1847(6-7):620-8. PubMed ID: 25868874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of mitochondrial functions involving mitochondrial permeability transition pore opening caused by maleic acid in rat kidney.
    Roginski AC; Zemniaçak ÂB; Marschner RA; Wajner SM; Ribeiro RT; Wajner M; Amaral AU
    J Bioenerg Biomembr; 2022 Aug; 54(4):203-213. PubMed ID: 35902433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impairment of mitochondrial bioenergetics and permeability transition induction caused by major long-chain fatty acids accumulating in VLCAD deficiency in skeletal muscle as potential pathomechanisms of myopathy.
    Cecatto C; Amaral AU; Roginski AC; Castilho RF; Wajner M
    Toxicol In Vitro; 2020 Feb; 62():104665. PubMed ID: 31629068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytanic acid and pristanic acid, branched-chain fatty acids associated with Refsum disease and other inherited peroxisomal disorders, mediate intracellular Ca2+ signaling through activation of free fatty acid receptor GPR40.
    Kruska N; Reiser G
    Neurobiol Dis; 2011 Aug; 43(2):465-72. PubMed ID: 21570468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.