These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36813145)

  • 1. Cholesterol stabilization of phospholipid vesicles against bile-induced solubilization.
    Tai P; Clulow AJ; Boyd BJ; Golding M; Singh H; Everett DW
    Chem Phys Lipids; 2023 May; 252():105289. PubMed ID: 36813145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cholesterol-phospholipid interactions resist the detergent effect of bovine bile.
    Tai P; Golding M; Singh H; Waterland M; Everett DW
    Colloids Surf B Biointerfaces; 2021 Sep; 205():111842. PubMed ID: 34022699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric distribution of phosphatidylcholine and sphingomyelin between micellar and vesicular phases. Potential implications for canalicular bile formation.
    Eckhardt ER; Moschetta A; Renooij W; Goerdayal SS; van Berge-Henegouwen GP; van Erpecum KJ
    J Lipid Res; 1999 Nov; 40(11):2022-33. PubMed ID: 10553006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different interactions of egg-yolk phosphatidylcholine and sphingomyelin with detergent bile salts.
    Nibbering CP; Frederik PM; van Berge-Henegouwen GP; van Veen HA; van Marle J; van Erpecum KJ
    Biochim Biophys Acta; 2002 Jul; 1583(2):213-20. PubMed ID: 12117565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophilic bile salts enhance differential distribution of sphingomyelin and phosphatidylcholine between micellar and vesicular phases: potential implications for their effects in vivo.
    Moschetta A; vanBerge-Henegouwen GP; Portincasa P; Renooij WL; Groen AK; van Erpecum KJ
    J Hepatol; 2001 Apr; 34(4):492-9. PubMed ID: 11394647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporation of cholesterol in sphingomyelin- phosphatidylcholine vesicles has profound effects on detergent-induced phase transitions.
    Moschetta A; Frederik PM; Portincasa P; vanBerge-Henegouwen GP; van Erpecum KJ
    J Lipid Res; 2002 Jul; 43(7):1046-53. PubMed ID: 12091488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sphingomyelin exhibits greatly enhanced protection compared with egg yolk phosphatidylcholine against detergent bile salts.
    Moschetta A; vanBerge-Henegouwen GP; Portincasa P; Palasciano G; Groen AK; van Erpecum KJ
    J Lipid Res; 2000 Jun; 41(6):916-24. PubMed ID: 10828083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of bile salts on molecular interactions between sphingomyelin and cholesterol: relevance to bile formation and stability.
    van Erpecum KJ; Carey MC
    Biochim Biophys Acta; 1997 Apr; 1345(3):269-82. PubMed ID: 9150247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholesterol crystallization in model biles: effects of bile salt and phospholipid species composition.
    Moschetta A; vanBerge-Henegouwen GP; Portincasa P; Palasciano G; van Erpecum KJ
    J Lipid Res; 2001 Aug; 42(8):1273-81. PubMed ID: 11483629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acyl chain unsaturation modulates distribution of lecithin molecular species between mixed micelles and vesicles in model bile. Implications for particle structure and metastable cholesterol solubilities.
    Cohen DE; Carey MC
    J Lipid Res; 1991 Aug; 32(8):1291-302. PubMed ID: 1770311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholesterol Decreases the Size and the Mechanical Resistance to Rupture of Sphingomyelin Rich Domains, in Lipid Bilayers Studied as a Model of the Milk Fat Globule Membrane.
    Murthy AV; Guyomarc'h F; Lopez C
    Langmuir; 2016 Jul; 32(26):6757-65. PubMed ID: 27300157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability of mixed micellar systems made by solubilizing phosphatidylcholine-cholesterol vesicles by bile salts.
    Lichtenberg D; Ragimova S; Bor A; Almog S; Vinkler C; Peled Y; Halpern Z
    Hepatology; 1990 Sep; 12(3 Pt 2):149S-153S; discussion 153S-154S. PubMed ID: 2210643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phospholipid molecular species influence crystal habits and transition sequences of metastable intermediates during cholesterol crystallization from bile salt-rich model bile.
    Konikoff FM; Cohen DE; Carey MC
    J Lipid Res; 1994 Jan; 35(1):60-70. PubMed ID: 8138723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermotropic and structural evaluation of the interaction of natural sphingomyelins with cholesterol.
    Quinn PJ; Wolf C
    Biochim Biophys Acta; 2009 Sep; 1788(9):1877-89. PubMed ID: 19616506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural alterations in lecithin-cholesterol vesicles following interactions with monomeric and micellar bile salts: physical-chemical basis for subselection of biliary lecithin species and aggregative states of biliary lipids during bile formation.
    Cohen DE; Angelico M; Carey MC
    J Lipid Res; 1990 Jan; 31(1):55-70. PubMed ID: 2313205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of vesicular and micellar carriers to cholesterol transport in human bile.
    Sömjen GJ; Gilat T
    J Lipid Res; 1985 Jun; 26(6):699-704. PubMed ID: 4031648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ordered raft domains induced by outer leaflet sphingomyelin in cholesterol-rich asymmetric vesicles.
    Lin Q; London E
    Biophys J; 2015 May; 108(9):2212-22. PubMed ID: 25954879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Egg-sphingomyelin and cholesterol form a stoichiometric molecular complex in bilayers of egg-phosphatidylcholine.
    Quinn PJ; Wolf C
    J Phys Chem B; 2010 Dec; 114(47):15536-45. PubMed ID: 21049976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature induced lipid membrane restructuring and changes in nanomechanics.
    Bhojoo U; Chen M; Zou S
    Biochim Biophys Acta Biomembr; 2018 Mar; 1860(3):700-709. PubMed ID: 29248477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural mechanisms of bile salt-induced growth of small unilamellar cholesterol-lecithin vesicles.
    Luk AS; Kaler EW; Lee SP
    Biochemistry; 1997 May; 36(19):5633-44. PubMed ID: 9153403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.