These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

967 related articles for article (PubMed ID: 36813307)

  • 1. T cell-mediated targeted delivery of tadalafil regulates immunosuppression and polyamine metabolism to overcome immune checkpoint blockade resistance in hepatocellular carcinoma.
    Wang X; Zhang Q; Zhou J; Xiao Z; Liu J; Deng S; Hong X; Huang W; Cai M; Guo Y; Huang J; Wang Y; Lin L; Zhu K
    J Immunother Cancer; 2023 Feb; 11(2):. PubMed ID: 36813307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inflammation-Regulated Nanodrug Sensitizes Hepatocellular Carcinoma to Checkpoint Blockade Therapy by Reprogramming the Tumor Microenvironment.
    Wang T; Lin M; Mao J; Tian L; Gan H; Hu X; Yan L; Long H; Cai J; Zheng X; Xiao Y; Li D; Shuai X; Pang P
    ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36314479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional nanodrug performs sonodynamic therapy and inhibits TGF-β to boost immune response against colorectal cancer and liver metastasis.
    Huang S; Ding D; Lan T; He G; Ren J; Liang R; Zhong H; Chen G; Lu X; Shuai X; Wei B
    Acta Biomater; 2023 Jul; 164():538-552. PubMed ID: 37037269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemotherapy-induced recruitment of myeloid-derived suppressor cells abrogates efficacy of immune checkpoint blockade.
    Kwong TT; Wong CH; Zhou JY; Cheng ASL; Sung JJY; Chan AWH; Chan SL
    JHEP Rep; 2021 Apr; 3(2):100224. PubMed ID: 33604533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting the crosstalk between cytokine-induced killer cells and myeloid-derived suppressor cells in hepatocellular carcinoma.
    Yu SJ; Ma C; Heinrich B; Brown ZJ; Sandhu M; Zhang Q; Fu Q; Agdashian D; Rosato U; Korangy F; Greten TF
    J Hepatol; 2019 Mar; 70(3):449-457. PubMed ID: 30414862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blocking LTB
    Yan J; Zhu J; Li X; Yang R; Xiao W; Huang C; Zheng C
    Phytomedicine; 2023 Oct; 119():154968. PubMed ID: 37531900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Janus Silica Nanoparticle-Based Tumor Microenvironment Modulator for Restoring Tumor Sensitivity to Programmed Cell Death Ligand 1 Immune Checkpoint Blockade Therapy.
    Lin X; Li F; Guan J; Wang X; Yao C; Zeng Y; Liu X
    ACS Nano; 2023 Aug; 17(15):14494-14507. PubMed ID: 37485850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor acidity-activatable macromolecule autophagy inhibitor and immune checkpoint blockade for robust treatment of prostate cancer.
    Wang Y; Lei H; Yan B; Zhang S; Xu B; Lin M; Shuai X; Huang J; Pang J
    Acta Biomater; 2023 Sep; 168():593-605. PubMed ID: 37474083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining p53 mRNA nanotherapy with immune checkpoint blockade reprograms the immune microenvironment for effective cancer therapy.
    Xiao Y; Chen J; Zhou H; Zeng X; Ruan Z; Pu Z; Jiang X; Matsui A; Zhu L; Amoozgar Z; Chen DS; Han X; Duda DG; Shi J
    Nat Commun; 2022 Feb; 13(1):758. PubMed ID: 35140208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanodrug modified with engineered cell membrane targets CDKs to activate aPD-L1 immunotherapy against liver metastasis of immune-desert colon cancer.
    Ding D; Liang R; Li T; Lan T; Li Y; Huang S; He G; Ren J; Li W; Zheng Z; Chen T; Fang J; Huang L; Shuai X; Wei B
    J Control Release; 2024 May; 369():309-324. PubMed ID: 38554771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting Myeloid-Derived Suppressor Cells to Enhance the Antitumor Efficacy of Immune Checkpoint Blockade Therapy.
    Li X; Zhong J; Deng X; Guo X; Lu Y; Lin J; Huang X; Wang C
    Front Immunol; 2021; 12():754196. PubMed ID: 35003065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delicaflavone reactivates anti-tumor immune responses by abrogating monocytic myeloid cell-mediated immunosuppression.
    Li L; You W; Wang X; Zou Y; Yao H; Lan H; Lin X; Zhang Q; Chen B
    Phytomedicine; 2023 Jan; 108():154508. PubMed ID: 36332384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repolarization of macrophages to improve sorafenib sensitivity for combination cancer therapy.
    Huang L; Xu R; Li W; Lv L; Lin C; Yang X; Yao Y; Saw PE; Xu X
    Acta Biomater; 2023 May; 162():98-109. PubMed ID: 36931417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local and Targeted Delivery of Immune Checkpoint Blockade Therapeutics.
    Han X; Li H; Zhou D; Chen Z; Gu Z
    Acc Chem Res; 2020 Nov; 53(11):2521-2533. PubMed ID: 33073988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-PD-1/PD-L1 Blockade Immunotherapy Employed in Treating Hepatitis B Virus Infection-Related Advanced Hepatocellular Carcinoma: A Literature Review.
    Li B; Yan C; Zhu J; Chen X; Fu Q; Zhang H; Tong Z; Liu L; Zheng Y; Zhao P; Jiang W; Fang W
    Front Immunol; 2020; 11():1037. PubMed ID: 32547550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular Tadalafil Nanovaccine for Cancer Immunotherapy by Alleviating Myeloid-Derived Suppressor Cells and Heightening Immunogenicity.
    Zhang T; Xiong H; Ma X; Gao Y; Xue P; Kang Y; Sun ZJ; Xu Z
    Small Methods; 2021 Jun; 5(6):e2100115. PubMed ID: 34927922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combinational Immunotherapy for Hepatocellular Carcinoma: Radiotherapy, Immune Checkpoint Blockade and Beyond.
    Lee YH; Tai D; Yip C; Choo SP; Chew V
    Front Immunol; 2020; 11():568759. PubMed ID: 33117354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a tumour immune barrier in the HCC microenvironment that determines the efficacy of immunotherapy.
    Liu Y; Xun Z; Ma K; Liang S; Li X; Zhou S; Sun L; Liu Y; Du Y; Guo X; Cui T; Zhou H; Wang J; Yin D; Song R; Zhang S; Cai W; Meng F; Guo H; Zhang B; Yang D; Bao R; Hu Q; Wang J; Ye Y; Liu L
    J Hepatol; 2023 Apr; 78(4):770-782. PubMed ID: 36708811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyamine Signal through HCC Microenvironment: A Key Regulator of Mitochondrial Preservation and Turnover in TAMs.
    Liu Q; Yan X; Li R; Yuan Y; Wang J; Zhao Y; Fu J; Su J
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38256070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of SMS in the tumor microenvironment is associated with immunosuppression in hepatocellular carcinoma.
    Xiang L; Piao L; Wang D; Qi LF
    Front Immunol; 2022; 13():974241. PubMed ID: 36544774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 49.