BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36813332)

  • 1. Percolation and phase behavior in cellulose nanocrystal suspensions from nonlinear rheological analysis.
    Wojno S; Ahlinder A; Altskär A; Stading M; Abitbol T; Kádár R
    Carbohydr Polym; 2023 May; 308():120622. PubMed ID: 36813332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Ionic Surfactants on the Viscoelastic Properties of Chiral Nematic Cellulose Nanocrystal Suspensions.
    Ranjbar D; Hatzikiriakos SG
    Langmuir; 2020 Jan; 36(1):293-301. PubMed ID: 31845815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of nanocrystalline cellulose suspensions: Rheology, liquid crystal ordering and colloidal phase behaviour.
    Xu Y; Atrens A; Stokes JR
    Adv Colloid Interface Sci; 2020 Jan; 275():102076. PubMed ID: 31780045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isotropic Gels of Cellulose Nanocrystals Grafted with Dialkyl Groups: Influence of Surface Group Topology from Nonlinear Oscillatory Shear.
    Wojno S; Sonker AK; Feldhusen J; Westman G; Kádár R
    Langmuir; 2023 May; 39(18):6433-6446. PubMed ID: 37096902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding viscoelastic behavior of hybrid nanocellulose film based on rheological and electrostatic observation in blended suspension.
    Kim M; Kim S; Han N; Lee S; Kim H
    Carbohydr Polym; 2023 Jan; 300():120218. PubMed ID: 36372470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulose Nanocrystal Aqueous Colloidal Suspensions: Evidence of Density Inversion at the Isotropic-Liquid Crystal Phase Transition.
    da Rosa RR; Silva PES; Saraiva DV; Kumar A; de Sousa APM; Sebastião P; Fernandes SN; Godinho MH
    Adv Mater; 2022 Jul; 34(28):e2108227. PubMed ID: 35502142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Order and gelation of cellulose nanocrystal suspensions: an overview of some issues.
    Gray DG
    Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2112):. PubMed ID: 29277736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of interparticle interactions on microstructural and rheological properties of cellulose nanocrystal stabilized emulsions.
    Pandey A; Derakhshandeh M; Kedzior SA; Pilapil B; Shomrat N; Segal-Peretz T; Bryant SL; Trifkovic M
    J Colloid Interface Sci; 2018 Dec; 532():808-818. PubMed ID: 30144751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface Charge Influence on the Phase Separation and Viscosity of Cellulose Nanocrystals.
    Abitbol T; Kam D; Levi-Kalisman Y; Gray DG; Shoseyov O
    Langmuir; 2018 Apr; 34(13):3925-3933. PubMed ID: 29513998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of counterion valency on the rheology of sulfonated cellulose nanocrystal hydrogels.
    Nyamayaro K; Mehrkhodavandi P; Hatzikiriakos SG
    Carbohydr Polym; 2023 Feb; 302():120378. PubMed ID: 36604056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase transition and gelation in cellulose nanocrystal-based aqueous suspensions studied by SANS.
    Xu Y; Gilbert EP; Sokolova A; Stokes JR
    J Colloid Interface Sci; 2024 Mar; 658():660-670. PubMed ID: 38134674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrothermal Gelation of Aqueous Cellulose Nanocrystal Suspensions.
    Lewis L; Derakhshandeh M; Hatzikiriakos SG; Hamad WY; MacLachlan MJ
    Biomacromolecules; 2016 Aug; 17(8):2747-54. PubMed ID: 27467200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of ultrasonic treatment on yield stress of highly concentrated cellulose nano-crystalline (CNC) aqueous suspensions.
    Zakani B; Grecov D
    Carbohydr Polym; 2022 Sep; 291():119651. PubMed ID: 35698354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of cellulose nanocrystals of different lengths.
    Raghuwanshi VS; Browne C; Batchelor W; Garnier G
    J Colloid Interface Sci; 2023 Jan; 630(Pt B):249-259. PubMed ID: 36327727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow and assembly of cellulose nanocrystals (CNC): A bottom-up perspective - A review.
    Abbasi Moud A; Abbasi Moud A
    Int J Biol Macromol; 2023 Mar; 232():123391. PubMed ID: 36716841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulose nanocrystals for gelation and percolation-induced reinforcement of a photocurable poly(vinyl alcohol) derivative.
    Corder RD; Adhikari P; Burroughs MC; Rojas OJ; Khan SA
    Soft Matter; 2020 Sep; 16(37):8602-8611. PubMed ID: 32845269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On rheological properties of disc-shaped cellulose nanocrystals.
    Li J; Wang Z; Wang P; Tian J; Liu T; Guo J; Zhu W; Khan MR; Xiao H; Song J
    Carbohydr Polym; 2024 Apr; 330():121764. PubMed ID: 38368079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropic polymer composites synthesized by immobilizing cellulose nanocrystal suspensions specifically oriented under magnetic fields.
    Tatsumi M; Kimura F; Kimura T; Teramoto Y; Nishio Y
    Biomacromolecules; 2014 Dec; 15(12):4579-89. PubMed ID: 25390070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shear-Coated Linear Birefringent and Chiral Cellulose Nanocrystal Films Prepared from Non-Sonicated Suspensions with Different Storage Time.
    Juárez-Rivera OR; Mauricio-Sánchez RA; Järrendahl K; Arwin H; Mendoza-Galván A
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactant Driven Liquid to Soft Solid Transition of Cellulose Nanocrystal Suspensions.
    Kushan E; Demir C; Senses E
    Langmuir; 2020 Aug; 36(32):9551-9561. PubMed ID: 32701292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.