These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 36813850)
21. Development of a Microfluidic-Based Post-Treatment Process for Size-Controlled Lipid Nanoparticles and Application to siRNA Delivery. Kimura N; Maeki M; Sato Y; Ishida A; Tani H; Harashima H; Tokeshi M ACS Appl Mater Interfaces; 2020 Jul; 12(30):34011-34020. PubMed ID: 32667806 [TBL] [Abstract][Full Text] [Related]
22. One-Step Production Using a Microfluidic Device of Highly Biocompatible Size-Controlled Noncationic Exosome-like Nanoparticles for RNA Delivery. Kimura N; Maeki M; Ishida A; Tani H; Tokeshi M ACS Appl Bio Mater; 2021 Feb; 4(2):1783-1793. PubMed ID: 35014524 [TBL] [Abstract][Full Text] [Related]
23. Development of Lipidoid Nanoparticles for siRNA Delivery to Neural Cells. Khare P; Dave KM; Kamte YS; Manoharan MA; O'Donnell LA; Manickam DS AAPS J; 2021 Dec; 24(1):8. PubMed ID: 34873640 [TBL] [Abstract][Full Text] [Related]
24. Chemistry of Lipid Nanoparticles for RNA Delivery. Eygeris Y; Gupta M; Kim J; Sahay G Acc Chem Res; 2022 Jan; 55(1):2-12. PubMed ID: 34850635 [TBL] [Abstract][Full Text] [Related]
25. Affinity-Based Enrichment of Extracellular Vesicles with Lipid Nanoprobes. Wan Y; Maurer M; Zheng SY Methods Mol Biol; 2022; 2394():185-197. PubMed ID: 35094329 [TBL] [Abstract][Full Text] [Related]
26. Mathematical Modeling: A Tool for Optimization of Lipid Nanoparticle-Mediated Delivery of siRNA. Mihaila R; Ruhela D; Keough E; Cherkaev E; Chang S; Galinski B; Bartz R; Brown D; Howell B; Cunningham JJ Mol Ther Nucleic Acids; 2017 Jun; 7():246-255. PubMed ID: 28624200 [TBL] [Abstract][Full Text] [Related]
27. Intranasal Delivery of lincRNA-Cox2 siRNA Loaded Extracellular Vesicles Decreases Lipopolysaccharide-Induced Microglial Proliferation in Mice. Liao K; Niu F; Dagur RS; He M; Tian C; Hu G J Neuroimmune Pharmacol; 2020 Sep; 15(3):390-399. PubMed ID: 31325121 [TBL] [Abstract][Full Text] [Related]
28. Extracellular vesicles: powerful candidates in nano-drug delivery systems. Liu X; Cao Y; Wang S; Liu J; Hao H Drug Deliv Transl Res; 2024 Feb; 14(2):295-311. PubMed ID: 37581742 [TBL] [Abstract][Full Text] [Related]
29. Scalable mRNA and siRNA Lipid Nanoparticle Production Using a Parallelized Microfluidic Device. Shepherd SJ; Warzecha CC; Yadavali S; El-Mayta R; Alameh MG; Wang L; Weissman D; Wilson JM; Issadore D; Mitchell MJ Nano Lett; 2021 Jul; 21(13):5671-5680. PubMed ID: 34189917 [TBL] [Abstract][Full Text] [Related]
30. Extracellular vesicle (ECV)-modified polyethylenimine (PEI) complexes for enhanced siRNA delivery in vitro and in vivo. Zhupanyn P; Ewe A; Büch T; Malek A; Rademacher P; Müller C; Reinert A; Jaimes Y; Aigner A J Control Release; 2020 Mar; 319():63-76. PubMed ID: 31866504 [TBL] [Abstract][Full Text] [Related]
31. Exogenous DNA Loading into Extracellular Vesicles via Electroporation is Size-Dependent and Enables Limited Gene Delivery. Lamichhane TN; Raiker RS; Jay SM Mol Pharm; 2015 Oct; 12(10):3650-7. PubMed ID: 26376343 [TBL] [Abstract][Full Text] [Related]
32. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. Kooijmans SAA; Stremersch S; Braeckmans K; de Smedt SC; Hendrix A; Wood MJA; Schiffelers RM; Raemdonck K; Vader P J Control Release; 2013 Nov; 172(1):229-238. PubMed ID: 23994516 [TBL] [Abstract][Full Text] [Related]
33. Polyethylenimines for RNAi-mediated gene targeting in vivo and siRNA delivery to the lung. Günther M; Lipka J; Malek A; Gutsch D; Kreyling W; Aigner A Eur J Pharm Biopharm; 2011 Apr; 77(3):438-49. PubMed ID: 21093588 [TBL] [Abstract][Full Text] [Related]
34. Polymer-Coated Extracellular Vesicles for Selective Codelivery of Chemotherapeutics and siRNA to Cancer Cells. Jhan YY; Palou Zuniga G; Singh KA; Gaharwar AK; Alge DL; Bishop CJ ACS Appl Bio Mater; 2021 Feb; 4(2):1294-1306. PubMed ID: 35014481 [TBL] [Abstract][Full Text] [Related]
35. A paradigm shift for extracellular vesicles as small RNA carriers: from cellular waste elimination to therapeutic applications. Hagiwara K; Ochiya T; Kosaka N Drug Deliv Transl Res; 2014; 4(1):31-7. PubMed ID: 24533256 [TBL] [Abstract][Full Text] [Related]
36. Hydrophobicity of Lipid-Conjugated siRNAs Predicts Productive Loading to Small Extracellular Vesicles. Biscans A; Haraszti RA; Echeverria D; Miller R; Didiot MC; Nikan M; Roux L; Aronin N; Khvorova A Mol Ther; 2018 Jun; 26(6):1520-1528. PubMed ID: 29699940 [TBL] [Abstract][Full Text] [Related]
37. Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma. Varshosaz J; Farzan M World J Gastroenterol; 2015 Nov; 21(42):12022-41. PubMed ID: 26576089 [TBL] [Abstract][Full Text] [Related]
38. Loading of Extracellular Vesicles with Hydrophobically Modified siRNAs. Didiot MC; Haraszti RA; Aronin N; Khvorova A Methods Mol Biol; 2018; 1740():199-214. PubMed ID: 29388146 [TBL] [Abstract][Full Text] [Related]
39. Delivery of Functional Small RNAs via Extracellular Vesicles In Vitro and In Vivo. Zhang D; Lee H; Jin Y Methods Mol Biol; 2020; 2115():107-117. PubMed ID: 32006397 [TBL] [Abstract][Full Text] [Related]
40. Construction of Fusion Protein for Enhanced Small RNA Loading to Extracellular Vesicles. Es-Haghi M; Neustroeva O; Chowdhury I; Laitinen P; Väänänen MA; Korvenlaita N; Malm T; Turunen MP; Turunen TA Genes (Basel); 2023 Jan; 14(2):. PubMed ID: 36833188 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]