These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 36814294)

  • 1. Transgenic ZmMYB167 Miscanthus sinensis with increased lignin to boost bioenergy generation for the bioeconomy.
    Bhatia R; Timms-Taravella E; Roberts LA; Moron-Garcia OM; Hauck B; Dalton S; Gallagher JA; Wagner M; Clifton-Brown J; Bosch M
    Biotechnol Biofuels Bioprod; 2023 Feb; 16(1):29. PubMed ID: 36814294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modified expression of ZmMYB167 in Brachypodium distachyon and Zea mays leads to increased cell wall lignin and phenolic content.
    Bhatia R; Dalton S; Roberts LA; Moron-Garcia OM; Iacono R; Kosik O; Gallagher JA; Bosch M
    Sci Rep; 2019 Jun; 9(1):8800. PubMed ID: 31217516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus.
    da Costa RM; Lee SJ; Allison GG; Hazen SP; Winters A; Bosch M
    Ann Bot; 2014 Oct; 114(6):1265-77. PubMed ID: 24737720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nutrient and drought stress: implications for phenology and biomass quality in miscanthus.
    da Costa RMF; Simister R; Roberts LA; Timms-Taravella E; Cambler AB; Corke FMK; Han J; Ward RJ; Buckeridge MS; Gomez LD; Bosch M
    Ann Bot; 2019 Oct; 124(4):553-566. PubMed ID: 30137291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A finalized determinant for complete lignocellulose enzymatic saccharification potential to maximize bioethanol production in bioenergy
    Alam A; Zhang R; Liu P; Huang J; Wang Y; Hu Z; Madadi M; Sun D; Hu R; Ragauskas AJ; Tu Y; Peng L
    Biotechnol Biofuels; 2019; 12():99. PubMed ID: 31057665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct and Overlapping Functions of
    Golfier P; Ermakova O; Unda F; Murphy EK; Xie J; He F; Zhang W; Lohmann JU; Mansfield SD; Rausch T; Wolf S
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of the rice BAHD acyltransferase AT10 increases xylan-bound p-coumarate and reduces lignin in Sorghum bicolor.
    Tian Y; Lin CY; Park JH; Wu CY; Kakumanu R; Pidatala VR; Vuu KM; Rodriguez A; Shih PM; Baidoo EEK; Temple S; Simmons BA; Gladden JM; Scheller HV; Eudes A
    Biotechnol Biofuels; 2021 Nov; 14(1):217. PubMed ID: 34801067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breeding Targets to Improve Biomass Quality in Miscanthus.
    van der Cruijsen K; Al Hassan M; van Erven G; Dolstra O; Trindade LM
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33419100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Miscanthus genotypes selected for different drought tolerance phenotypes show enhanced tolerance across combinations of salinity and drought treatments.
    Stavridou E; Webster RJ; Robson PRH
    Ann Bot; 2019 Oct; 124(4):653-674. PubMed ID: 31665760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The performance of
    Zheng C; Yi Z; Xiao L; Sun G; Li M; Xue S; Peng X; Duan M; Chen Z
    Front Plant Sci; 2022; 13():921824. PubMed ID: 36311103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The in vivo impact of MsLAC1, a Miscanthus laccase isoform, on lignification and lignin composition contrasts with its in vitro substrate preference.
    He F; Machemer-Noonan K; Golfier P; Unda F; Dechert J; Zhang W; Hoffmann N; Samuels L; Mansfield SD; Rausch T; Wolf S
    BMC Plant Biol; 2019 Dec; 19(1):552. PubMed ID: 31830911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogeny in defining model plants for lignocellulosic ethanol production: a comparative study of Brachypodium distachyon, wheat, maize, and Miscanthus x giganteus leaf and stem biomass.
    Meineke T; Manisseri C; Voigt CA
    PLoS One; 2014; 9(8):e103580. PubMed ID: 25133818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of secondary cell wall biosynthesis by a NAC transcription factor from
    Golfier P; Volkert C; He F; Rausch T; Wolf S
    Plant Direct; 2017 Nov; 1(5):e00024. PubMed ID: 31245671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salt stress alters the cell wall components and structure in Miscanthus sinensis stems.
    van der Cruijsen K; Al Hassan M; van Erven G; Kollerie N; van Lent B; Dechesne A; Dolstra O; Paulo MJ; Trindade LM
    Physiol Plant; 2024; 176(4):e14430. PubMed ID: 38981734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of hemicellulose, cellulose and lignin content using visible and near infrared spectroscopy in Miscanthus sinensis.
    Jin X; Chen X; Shi C; Li M; Guan Y; Yu CY; Yamada T; Sacks EJ; Peng J
    Bioresour Technol; 2017 Oct; 241():603-609. PubMed ID: 28601778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VOC emissions and carbon balance of two bioenergy plantations in response to nitrogen fertilization: A comparison of Miscanthus and Salix.
    Hu B; Jarosch AM; Gauder M; Graeff-Hönninger S; Schnitzler JP; Grote R; Rennenberg H; Kreuzwieser J
    Environ Pollut; 2018 Jun; 237():205-217. PubMed ID: 29486454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-Wide Association Study for Major Biofuel Traits in Sorghum Using Minicore Collection.
    Rayaprolu L; Selvanayagam S; Rao DM; Gupta R; Das RR; Rathore A; Gandham P; Kiranmayee KNSU; Deshpande SP; Are AK
    Protein Pept Lett; 2021; 28(8):909-928. PubMed ID: 33588716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic complexity of miscanthus cell wall composition and biomass quality for biofuels.
    van der Weijde T; Kamei CLA; Severing EI; Torres AF; Gomez LD; Dolstra O; Maliepaard CA; McQueen-Mason SJ; Visser RGF; Trindade LM
    BMC Genomics; 2017 May; 18(1):406. PubMed ID: 28545405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Desirable plant cell wall traits for higher-quality miscanthus lignocellulosic biomass.
    da Costa RMF; Pattathil S; Avci U; Winters A; Hahn MG; Bosch M
    Biotechnol Biofuels; 2019; 12():85. PubMed ID: 31011368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of a bacterial 3-dehydroshikimate dehydratase (QsuB) reduces lignin and improves biomass saccharification efficiency in switchgrass (Panicum virgatum L.).
    Hao Z; Yogiswara S; Wei T; Benites VT; Sinha A; Wang G; Baidoo EEK; Ronald PC; Scheller HV; Loqué D; Eudes A
    BMC Plant Biol; 2021 Jan; 21(1):56. PubMed ID: 33478381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.