These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 36814380)

  • 1. Super-exponential growth and stochastic size dynamics in rod-like bacteria.
    Cylke A; Banerjee S
    Biophys J; 2023 Apr; 122(7):1254-1267. PubMed ID: 36814380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaling laws governing stochastic growth and division of single bacterial cells.
    Iyer-Biswas S; Wright CS; Henry JT; Lo K; Burov S; Lin Y; Crooks GE; Crosson S; Dinner AR; Scherer NF
    Proc Natl Acad Sci U S A; 2014 Nov; 111(45):15912-7. PubMed ID: 25349411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biphasic growth dynamics control cell division in Caulobacter crescentus.
    Banerjee S; Lo K; Daddysman MK; Selewa A; Kuntz T; Dinner AR; Scherer NF
    Nat Microbiol; 2017 Jul; 2():17116. PubMed ID: 28737755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scaling of stochastic growth and division dynamics: A comparative study of individual rod-shaped cells in the Mother Machine and SChemostat platforms.
    Ziegler KF; Joshi K; Wright CS; Roy S; Caruso W; Biswas RR; Iyer-Biswas S
    Mol Biol Cell; 2024 Jun; 35(6):ar78. PubMed ID: 38598301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Noise Mechanisms in Cell-Size Control.
    Modi S; Vargas-Garcia CA; Ghusinga KR; Singh A
    Biophys J; 2017 Jun; 112(11):2408-2418. PubMed ID: 28591613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A stochastic spatiotemporal model of a response-regulator network in the Caulobacter crescentus cell cycle.
    Li F; Subramanian K; Chen M; Tyson JJ; Cao Y
    Phys Biol; 2016 Jun; 13(3):035007. PubMed ID: 27345750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intergenerational continuity of cell shape dynamics in Caulobacter crescentus.
    Wright CS; Banerjee S; Iyer-Biswas S; Crosson S; Dinner AR; Scherer NF
    Sci Rep; 2015 Mar; 5():9155. PubMed ID: 25778096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A constant size extension drives bacterial cell size homeostasis.
    Campos M; Surovtsev IV; Kato S; Paintdakhi A; Beltran B; Ebmeier SE; Jacobs-Wagner C
    Cell; 2014 Dec; 159(6):1433-46. PubMed ID: 25480302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FtsA Regulates Z-Ring Morphology and Cell Wall Metabolism in an FtsZ C-Terminal Linker-Dependent Manner in Caulobacter crescentus.
    Barrows JM; Sundararajan K; Bhargava A; Goley ED
    J Bacteriol; 2020 Mar; 202(7):. PubMed ID: 31932314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A quantitative study of the division cycle of Caulobacter crescentus stalked cells.
    Li S; Brazhnik P; Sobral B; Tyson JJ
    PLoS Comput Biol; 2008 Jan; 4(1):e9. PubMed ID: 18225942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core-oscillator model of Caulobacter crescentus.
    Vandecan Y; Biondi E; Blossey R
    Phys Rev E; 2016 Jun; 93(6):062413. PubMed ID: 27415304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shapeshifting to Survive: Shape Determination and Regulation in Caulobacter crescentus.
    Woldemeskel SA; Goley ED
    Trends Microbiol; 2017 Aug; 25(8):673-687. PubMed ID: 28359631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caulobacter crescentus: model system extraordinaire.
    Govers SK; Jacobs-Wagner C
    Curr Biol; 2020 Oct; 30(19):R1151-R1158. PubMed ID: 33022259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Basis and Ecological Relevance of
    Heinrich K; Leslie DJ; Morlock M; Bertilsson S; Jonas K
    mBio; 2019 Aug; 10(4):. PubMed ID: 31431551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial regulation in Caulobacter crescentus.
    Thanbichler M
    Curr Opin Microbiol; 2009 Dec; 12(6):715-21. PubMed ID: 19854671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinguishing different modes of growth using single-cell data.
    Kar P; Tiruvadi-Krishnan S; Männik J; Männik J; Amir A
    Elife; 2021 Dec; 10():. PubMed ID: 34854811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nutrient-Dependent Trade-Offs between Ribosomes and Division Protein Synthesis Control Bacterial Cell Size and Growth.
    Serbanescu D; Ojkic N; Banerjee S
    Cell Rep; 2020 Sep; 32(12):108183. PubMed ID: 32966800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exponential trajectories, cell size fluctuations, and the adder property in bacteria follow from simple chemical dynamics and division control.
    Pandey PP; Singh H; Jain S
    Phys Rev E; 2020 Jun; 101(6-1):062406. PubMed ID: 32688579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal controls of the asymmetric cell division cycle in Caulobacter crescentus.
    Li S; Brazhnik P; Sobral B; Tyson JJ
    PLoS Comput Biol; 2009 Aug; 5(8):e1000463. PubMed ID: 19680425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-gene tuning of Caulobacter cell cycle period and noise, swarming motility, and surface adhesion.
    Lin Y; Crosson S; Scherer NF
    Mol Syst Biol; 2010 Dec; 6():445. PubMed ID: 21179017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.