These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 36814930)
41. [In vivo confocal microscopy and ocular surface diseases: anatomical-clinical correlations]. De Nicola R; Labbé A; Amar N; Dupas B; Baudouin C J Fr Ophtalmol; 2005 Sep; 28(7):691-8. PubMed ID: 16208218 [TBL] [Abstract][Full Text] [Related]
42. Redefining the human corneal immune compartment using dynamic intravital imaging. Downie LE; Zhang X; Wu M; Karunaratne S; Loi JK; Senthil K; Arshad S; Bertram K; Cunningham AL; Carnt N; Mueller SN; Chinnery HR Proc Natl Acad Sci U S A; 2023 Aug; 120(31):e2217795120. PubMed ID: 37487076 [TBL] [Abstract][Full Text] [Related]
43. Laser scanning in vivo confocal microscopy of the normal human corneoscleral limbus. Patel DV; Sherwin T; McGhee CN Invest Ophthalmol Vis Sci; 2006 Jul; 47(7):2823-7. PubMed ID: 16799020 [TBL] [Abstract][Full Text] [Related]
44. Regeneration of rabbit cornea following excimer laser photorefractive keratectomy: a study on gap junctions, epithelial junctions and epidermal growth factor receptor expression in correlation with cell proliferation. Ratkay-Traub I; Hopp B; Bor Z; Dux L; Becker DL; Krenacs T Exp Eye Res; 2001 Sep; 73(3):291-302. PubMed ID: 11520104 [TBL] [Abstract][Full Text] [Related]
46. Morphologic and histopathologic changes in the rabbit cornea produced by femtosecond laser-assisted multilayer intrastromal ablation. Zhang ZY; Chu RY; Zhou XT; Dai JH; Sun XH; Hoffman MR; Zhang XR Invest Ophthalmol Vis Sci; 2009 May; 50(5):2147-53. PubMed ID: 19136715 [TBL] [Abstract][Full Text] [Related]
47. Morphological characterization of the human corneal epithelium by Sterenczak KA; Winter K; Sperlich K; Stahnke T; Linke S; Farrokhi S; Klemm M; Allgeier S; Köhler B; Reichert KM; Guthoff RF; Bohn S; Stachs O Quant Imaging Med Surg; 2021 May; 11(5):1737-1750. PubMed ID: 33936961 [TBL] [Abstract][Full Text] [Related]
48. Measurement of In Vivo Three-Dimensional Corneal Cell Density and Size Using Two-Photon Imaging in C57BL/6 Mice. Zhang H; He S; Liu S; Xie Y; Chen G; Zhang J; Sun S; Liang D; Wang L Curr Eye Res; 2016 Apr; 41(4):448-55. PubMed ID: 26084010 [TBL] [Abstract][Full Text] [Related]
49. [Effects of amniotic extraction on epithelial wound healing and stromal remodelling after excimer laser keratectomy in rabbit cornea]. Xiao Q; Chen Y; Du J; Wang H; Li W; Liu Z Zhonghua Yan Ke Za Zhi; 2014 Jan; 50(1):42-50. PubMed ID: 24709133 [TBL] [Abstract][Full Text] [Related]
50. Effects of amniotic membrane on epithelial wound healing and stromal remodelling after excimer laser keratectomy in rabbit cornea. Woo HM; Kim MS; Kweon OK; Kim DY; Nam TC; Kim JH Br J Ophthalmol; 2001 Mar; 85(3):345-9. PubMed ID: 11222344 [TBL] [Abstract][Full Text] [Related]
52. Two-photon imaging of the cornea visualized in the living mouse using vital dyes. Zhang H; Wang L; Liu S; Xie Y; Deng X; He S; Zhang J; Sun S; Li X; Li Z Invest Ophthalmol Vis Sci; 2013 Oct; 54(10):6526-36. PubMed ID: 24030459 [TBL] [Abstract][Full Text] [Related]
53. Tandem scanning confocal microscopic analysis of differences between epithelial healing in limbal stem cell deficiency and normal corneal reepithelialization in rabbits. Cho BJ; Djalilian AR; Holland EJ Cornea; 1998 Jan; 17(1):68-73. PubMed ID: 9436883 [TBL] [Abstract][Full Text] [Related]
54. Confocal microscopic characterization of wound repair after photorefractive keratectomy. Møller-Pedersen T; Li HF; Petroll WM; Cavanagh HD; Jester JV Invest Ophthalmol Vis Sci; 1998 Mar; 39(3):487-501. PubMed ID: 9501858 [TBL] [Abstract][Full Text] [Related]
55. Inflammatory response in the early stages of wound healing after excimer laser keratectomy. O'Brien TP; Li Q; Ashraf MF; Matteson DM; Stark WJ; Chan CC Arch Ophthalmol; 1998 Nov; 116(11):1470-4. PubMed ID: 9823348 [TBL] [Abstract][Full Text] [Related]
56. Age-related differences in the normal human cornea: a laser scanning in vivo confocal microscopy study. Niederer RL; Perumal D; Sherwin T; McGhee CN Br J Ophthalmol; 2007 Sep; 91(9):1165-9. PubMed ID: 17389741 [TBL] [Abstract][Full Text] [Related]
57. Corneal Epithelial Abrasion with Ocular Burr As a Model for Cornea Wound Healing. Kalha S; Kuony A; Michon F J Vis Exp; 2018 Jul; (137):. PubMed ID: 30059040 [TBL] [Abstract][Full Text] [Related]
58. Suppression of alkali-induced oxidative injury in the cornea by mesenchymal stem cells growing on nanofiber scaffolds and transferred onto the damaged corneal surface. Cejkova J; Trosan P; Cejka C; Lencova A; Zajicova A; Javorkova E; Kubinova S; Sykova E; Holan V Exp Eye Res; 2013 Nov; 116():312-23. PubMed ID: 24145108 [TBL] [Abstract][Full Text] [Related]
59. Molecular cell biology for the refractive corneal surgeon: programmed cell death and wound healing. Wilson SE J Refract Surg; 1997; 13(2):171-5. PubMed ID: 9109075 [TBL] [Abstract][Full Text] [Related]
60. Evaluation of the corneal epithelium in non-Sjögren's and Sjögren's dry eyes: an in vivo confocal microscopy study using HRT III RCM. Lee OL; Tepelus TC; Huang J; Irvine AG; Irvine C; Chiu GB; Sadda SR BMC Ophthalmol; 2018 Dec; 18(1):309. PubMed ID: 30514255 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]