These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36815437)

  • 1. Manipulation of Particle/Cell Based on Compressibility in a Divergent Microchannel by Surface Acoustic Wave.
    Xue S; Xu Q; Xu Z; Zhang X; Zhang H; Zhang X; He F; Chen Y; Xue Y; Hao P
    Anal Chem; 2023 Mar; 95(9):4282-4290. PubMed ID: 36815437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Residue-free acoustofluidic manipulation of microparticles via removal of microchannel anechoic corner.
    Khan MS; Sahin MA; Destgeer G; Park J
    Ultrason Sonochem; 2022 Sep; 89():106161. PubMed ID: 36088893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of 300 and 100 nm Particles in Fabry-Perot Acoustofluidic Resonators.
    Sehgal P; Kirby BJ
    Anal Chem; 2017 Nov; 89(22):12192-12200. PubMed ID: 29039191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical study of acoustophoretic manipulation of particles in microfluidic channels.
    Ma J; Liang D; Yang X; Wang H; Wu F; Sun C; Xiao Y
    Proc Inst Mech Eng H; 2021 Oct; 235(10):1163-1174. PubMed ID: 34116594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of microchannel protrusion on the bulk acoustic wave-induced acoustofluidics: numerical investigation.
    Zhou Y
    Biomed Microdevices; 2021 Dec; 24(1):7. PubMed ID: 34964071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Submicron separation of microspheres via travelling surface acoustic waves.
    Destgeer G; Ha BH; Jung JH; Sung HJ
    Lab Chip; 2014 Dec; 14(24):4665-72. PubMed ID: 25312065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell separation using tilted-angle standing surface acoustic waves.
    Ding X; Peng Z; Lin SC; Geri M; Li S; Li P; Chen Y; Dao M; Suresh S; Huang TJ
    Proc Natl Acad Sci U S A; 2014 Sep; 111(36):12992-7. PubMed ID: 25157150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully Microfabricated Surface Acoustic Wave Tweezer for Collection of Submicron Particles and Human Blood Cells.
    Fakhfouri A; Colditz M; Devendran C; Ivanova K; Jacob S; Neild A; Winkler A
    ACS Appl Mater Interfaces; 2023 May; 15(20):24023-24033. PubMed ID: 37188328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Power-controlled acoustofluidic manipulation of microparticles.
    Wu F; Wang H; Sun C; Yuan F; Xie Z; Mikhaylov R; Wu Z; Shen M; Yang J; Evans W; Fu Y; Tian L; Yang X
    Ultrasonics; 2023 Sep; 134():107087. PubMed ID: 37406388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffraction-based acoustic manipulation in microchannels enables continuous particle and bacteria focusing.
    Devendran C; Choi K; Han J; Ai Y; Neild A; Collins DJ
    Lab Chip; 2020 Aug; 20(15):2674-2688. PubMed ID: 32608464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part I.
    Sachs S; Baloochi M; Cierpka C; König J
    Lab Chip; 2022 May; 22(10):2011-2027. PubMed ID: 35482303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustofluidic Properties of Polystyrene Microparticles.
    Edthofer A; Novotny J; Lenshof A; Laurell T; Baasch T
    Anal Chem; 2023 Jul; 95(27):10346-10352. PubMed ID: 37363950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Detection in Droplet Microfluidics by Acoustic Vortex Modulation of Particle Rings and Particle Clusters via Asymmetric Propagation of Surface Acoustic Waves.
    Liu Y; Ji M; Yu N; Zhao C; Xue G; Fu W; Qiao X; Zhang Y; Chou X; Geng W
    Biosensors (Basel); 2022 Jun; 12(6):. PubMed ID: 35735547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic Cell Separation Based on Density and Mechanical Properties.
    Xie Y; Mao Z; Bachman H; Li P; Zhang P; Ren L; Wu M; Huang TJ
    J Biomech Eng; 2020 Mar; 142(3):0310051-9. PubMed ID: 32006021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization Analysis of Particle Separation Parameters for a Standing Surface Acoustic Wave Acoustofluidic Chip.
    Han J; Hu H; Lei Y; Huang Q; Fu C; Gai C; Ning J
    ACS Omega; 2023 Jan; 8(1):311-323. PubMed ID: 36643460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and characterisation of acoustofluidic devices using detachable electrodes made from PCB.
    Mikhaylov R; Wu F; Wang H; Clayton A; Sun C; Xie Z; Liang D; Dong Y; Yuan F; Moschou D; Wu Z; Shen MH; Yang J; Fu Y; Yang Z; Burton C; Errington RJ; Wiltshire M; Yang X
    Lab Chip; 2020 May; 20(10):1807-1814. PubMed ID: 32319460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional modeling and experimentation of microfluidic devices driven by surface acoustic wave.
    Liu X; Zheng T; Wang C
    Ultrasonics; 2023 Mar; 129():106914. PubMed ID: 36577304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface acoustic wave concentration of particle and bioparticle suspensions.
    Li H; Friend JR; Yeo LY
    Biomed Microdevices; 2007 Oct; 9(5):647-56. PubMed ID: 17530412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic Wave-Driven Functionalized Particles for Aptamer-Based Target Biomolecule Separation.
    Ahmad R; Destgeer G; Afzal M; Park J; Ahmed H; Jung JH; Park K; Yoon TS; Sung HJ
    Anal Chem; 2017 Dec; 89(24):13313-13319. PubMed ID: 29148722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential-well model in acoustic tweezers.
    Kang ST; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1451-9. PubMed ID: 20529720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.