These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36815574)

  • 1. Significance of Co-ion Partitioning in Salt Transport through Polyamide Reverse Osmosis Membranes.
    Wang L; Cao T; Pataroque KE; Kaneda M; Biesheuvel PM; Elimelech M
    Environ Sci Technol; 2023 Mar; 57(9):3930-3939. PubMed ID: 36815574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Feed Water pH on the Partitioning of Alkali Metal Salts from Aqueous Phase into the Polyamide Active Layers of Reverse Osmosis Membranes.
    Wang J; Armstrong MD; Grzebyk K; Vickers R; Coronell O
    Environ Sci Technol; 2021 Mar; 55(5):3250-3259. PubMed ID: 33600153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salt and Water Transport in Reverse Osmosis Membranes: Beyond the Solution-Diffusion Model.
    Wang L; Cao T; Dykstra JE; Porada S; Biesheuvel PM; Elimelech M
    Environ Sci Technol; 2021 Dec; 55(24):16665-16675. PubMed ID: 34879196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partitioning of Alkali Metal Salts and Boric Acid from Aqueous Phase into the Polyamide Active Layers of Reverse Osmosis Membranes.
    Wang J; Kingsbury RS; Perry LA; Coronell O
    Environ Sci Technol; 2017 Feb; 51(4):2295-2303. PubMed ID: 28084076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Swelling and morphology of the skin layer of polyamide composite membranes: an atomic force microscopy study.
    Freger V
    Environ Sci Technol; 2004 Jun; 38(11):3168-75. PubMed ID: 15224751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced partitioning and transport of phenolic micropollutants within polyamide composite membranes.
    Drazevic E; Bason S; Kosutic K; Freger V
    Environ Sci Technol; 2012 Mar; 46(6):3377-83. PubMed ID: 22260225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Solute Molecular Diameter on Permeability-Selectivity Tradeoff of Thin-Film Composite Polyamide Membranes in Aqueous Separations.
    Chen X; Boo C; Yip NY
    Water Res; 2021 Aug; 201():117311. PubMed ID: 34192614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in physicochemical and transport properties of a reverse osmosis membrane exposed to chloraminated seawater.
    Valentino L; Renkens T; Maugin T; Croué JP; Mariñas BJ
    Environ Sci Technol; 2015 Feb; 49(4):2301-9. PubMed ID: 25590510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of water matrix on the rejection of neutral pharmaceutically active compound by thin-film composite nanofiltration and reverse osmosis membranes.
    Shah IA; Ali S; Yang Z; Ihsanullah I; Huang H
    Chemosphere; 2022 Sep; 303(Pt 3):135211. PubMed ID: 35660049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes.
    Yüksel S; Kabay N; Yüksel M
    J Hazard Mater; 2013 Dec; 263 Pt 2():307-10. PubMed ID: 23731784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the effect of charge density in the active layers of reverse osmosis and nanofiltration membranes on the rejection of arsenic(III) and potassium iodide.
    Coronell O; Mi B; Mariñas BJ; Cahill DG
    Environ Sci Technol; 2013 Jan; 47(1):420-8. PubMed ID: 23199291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Permeability of uncharged organic molecules in reverse osmosis desalination membranes.
    Dražević E; Košutić K; Svalina M; Catalano J
    Water Res; 2017 Jun; 116():13-22. PubMed ID: 28292676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Permeability and selectivity of reverse osmosis membranes: correlation to swelling revisited.
    Dražević E; Košutić K; Freger V
    Water Res; 2014 Feb; 49():444-52. PubMed ID: 24216230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the Knowledge Attained by Machine Learning on Ion Transport across Polyamide Membranes Using Explainable Artificial Intelligence.
    Jeong N; Epsztein R; Wang R; Park S; Lin S; Tong T
    Environ Sci Technol; 2023 Nov; 57(46):17851-17862. PubMed ID: 36917705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance.
    Lind ML; Eumine Suk D; Nguyen TV; Hoek EM
    Environ Sci Technol; 2010 Nov; 44(21):8230-5. PubMed ID: 20942398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing RO efficiency by chemical-free ion-exchange and Donnan dialysis: Principles and practical implications.
    Vanoppen M; Stoffels G; Demuytere C; Bleyaert W; Verliefde AR
    Water Res; 2015 Sep; 80():59-70. PubMed ID: 25996753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recycling of end-of-life reverse osmosis membranes by oxidative treatment: a technical evaluation.
    Coutinho de Paula E; Gomes JCL; Amaral MCS
    Water Sci Technol; 2017 Jul; 76(3-4):605-622. PubMed ID: 28759443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-motion-performance relationship of flux-enhanced reverse osmosis (RO) membranes composed of aromatic polyamide thin films.
    Kwak SY; Jung SG; Kim SH
    Environ Sci Technol; 2001 Nov; 35(21):4334-40. PubMed ID: 11718351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of transmembrane hydraulic pressure on performance of forward osmosis membranes.
    Coday BD; Heil DM; Xu P; Cath TY
    Environ Sci Technol; 2013 Mar; 47(5):2386-93. PubMed ID: 23363015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong improvement of reverse osmosis polyamide membrane performance by addition of ZIF-8 nanoparticles: Effect of particle size and dispersion in selective layer.
    Wang F; Zheng T; Xiong R; Wang P; Ma J
    Chemosphere; 2019 Oct; 233():524-531. PubMed ID: 31185336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.