BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 36815722)

  • 1. Chemoenzymatic Late-Stage Modifications Enable Downstream Click-Mediated Fluorescent Tagging of Peptides.
    Colombano A; Dalponte L; Dall'Angelo S; Clemente C; Idress M; Ghazal A; Houssen WE
    Angew Chem Int Ed Engl; 2023 Apr; 62(16):e202215979. PubMed ID: 36815722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-Prenylation of Tryptophan by an Aromatic Prenyltransferase from the Cyanobactin Biosynthetic Pathway.
    Dalponte L; Parajuli A; Younger E; Mattila A; Jokela J; Wahlsten M; Leikoski N; Sivonen K; Jarmusch SA; Houssen WE; Fewer DP
    Biochemistry; 2018 Dec; 57(50):6860-6867. PubMed ID: 30452235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Single Amino Acid Switch Alters the Isoprene Donor Specificity in Ribosomally Synthesized and Post-Translationally Modified Peptide Prenyltransferases.
    Estrada P; Morita M; Hao Y; Schmidt EW; Nair SK
    J Am Chem Soc; 2018 Jul; 140(26):8124-8127. PubMed ID: 29924593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Indole prenyltransferases from fungi: a new enzyme group with high potential for the production of prenylated indole derivatives.
    Steffan N; Grundmann A; Yin WB; Kremer A; Li SM
    Curr Med Chem; 2009; 16(2):218-31. PubMed ID: 19149573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalysts for the Enzymatic Lipidation of Peptides.
    Zheng Y; Cong Y; Schmidt EW; Nair SK
    Acc Chem Res; 2022 May; 55(9):1313-1323. PubMed ID: 35442036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery, biochemical characterization, and bioengineering of cyanobactin prenyltransferases.
    Zhang Y; Goto Y; Suga H
    Trends Biochem Sci; 2023 Apr; 48(4):360-374. PubMed ID: 36564250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical characterization of a cyanobactin arginine-
    Clemente C; Johnson N; Ouyang X; Popin RV; Dall'Angelo S; Wahlsten M; Jokela J; Colombano A; Nardone B; Fewer DP; Houssen WE
    Chem Commun (Camb); 2022 Oct; 58(86):12054-12057. PubMed ID: 36193595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Unique Tryptophan C-Prenyltransferase from the Kawaguchipeptin Biosynthetic Pathway.
    Parajuli A; Kwak DH; Dalponte L; Leikoski N; Galica T; Umeobika U; Trembleau L; Bent A; Sivonen K; Wahlsten M; Wang H; Rizzi E; De Bellis G; Naismith J; Jaspars M; Liu X; Houssen W; Fewer DP
    Angew Chem Int Ed Engl; 2016 Mar; 55(11):3596-9. PubMed ID: 26846478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Late-Stage Chemoenzymatic Installation of Hydroxy-Bearing Allyl Moiety on the Indole Ring of Tryptophan-Containing Peptides.
    Mupparapu N; Brewster L; Ostrom KF; Elshahawi SI
    Chemistry; 2022 Apr; 28(20):e202104614. PubMed ID: 35178791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-Mining-Based Discovery of the Cyclic Peptide Tolypamide and TolF, a Ser/Thr Forward O-Prenyltransferase.
    Purushothaman M; Sarkar S; Morita M; Gugger M; Schmidt EW; Morinaka BI
    Angew Chem Int Ed Engl; 2021 Apr; 60(15):8460-8465. PubMed ID: 33586286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prenyltransferases as key enzymes in primary and secondary metabolism.
    Winkelblech J; Fan A; Li SM
    Appl Microbiol Biotechnol; 2015 Sep; 99(18):7379-97. PubMed ID: 26216239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of Alkyl-Donor Promiscuity of Tyrosine-O-Prenyltransferase SirD from Leptosphaeria maculans.
    Bandari C; Scull EM; Masterson JM; Tran RHQ; Foster SB; Nicholas KM; Singh S
    Chembiochem; 2017 Dec; 18(23):2323-2327. PubMed ID: 28960770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aestuaramides, a natural library of cyanobactin cyclic peptides resulting from isoprene-derived Claisen rearrangements.
    McIntosh JA; Lin Z; Tianero MD; Schmidt EW
    ACS Chem Biol; 2013 May; 8(5):877-83. PubMed ID: 23411099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Biochemistry and Structural Biology of Cyanobactin Pathways: Enabling Combinatorial Biosynthesis.
    Gu W; Dong SH; Sarkar S; Nair SK; Schmidt EW
    Methods Enzymol; 2018; 604():113-163. PubMed ID: 29779651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure Prediction and Genome Mining-Aided Discovery of the Bacterial C-Terminal Tryptophan Prenyltransferase PalQ.
    Miyata A; Ito S; Fujinami D
    Adv Sci (Weinh); 2024 Feb; 11(6):e2307372. PubMed ID: 38059776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FgaPT2, a biocatalytic tool for alkyl-diversification of indole natural products.
    Bandari C; Scull EM; Bavineni T; Nimmo SL; Gardner ED; Bensen RC; Burgett AW; Singh S
    Medchemcomm; 2019 Aug; 10(8):1465-1475. PubMed ID: 31534661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a brevianamide F reverse prenyltransferase BrePT from Aspergillus versicolor with a broad substrate specificity towards tryptophan-containing cyclic dipeptides.
    Yin S; Yu X; Wang Q; Liu XQ; Li SM
    Appl Microbiol Biotechnol; 2013 Feb; 97(4):1649-60. PubMed ID: 22660767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rubber elongation by farnesyl pyrophosphate synthases involves a novel switch in enzyme stereospecificity.
    Light DR; Lazarus RA; Dennis MS
    J Biol Chem; 1989 Nov; 264(31):18598-607. PubMed ID: 2808389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of aromatic prenyltransferases in the biosynthesis of indole derivatives.
    Li SM
    Phytochemistry; 2009; 70(15-16):1746-57. PubMed ID: 19398116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Switching Prenyl Donor Specificities of Cyanobactin Prenyltransferases.
    Zhang Y; Hamada K; Satake M; Sengoku T; Goto Y; Suga H
    J Am Chem Soc; 2023 Nov; 145(44):23893-23898. PubMed ID: 37877712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.