These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36816070)

  • 1. Anaerobic demethylation of guaiacyl-derived monolignols enabled by a designed artificial cobalamin methyltransferase fusion enzyme.
    Grimm C; Pompei S; Egger K; Fuchs M; Kroutil W
    RSC Adv; 2023 Feb; 13(9):5770-5777. PubMed ID: 36816070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen-Free Regioselective Biocatalytic Demethylation of Methyl-phenyl Ethers via Methyltransfer Employing Veratrol-
    Grimm C; Lazzarotto M; Pompei S; Schichler J; Richter N; Farnberger JE; Fuchs M; Kroutil W
    ACS Catal; 2020 Sep; 10(18):10375-10380. PubMed ID: 32974079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the cobalamin-binding protein of a putative O-demethylase from Desulfitobacterium hafniense DCB-2.
    Sjuts H; Dunstan MS; Fisher K; Leys D
    Acta Crystallogr D Biol Crystallogr; 2013 Aug; 69(Pt 8):1609-16. PubMed ID: 23897483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity.
    Anterola AM; Lewis NG
    Phytochemistry; 2002 Oct; 61(3):221-94. PubMed ID: 12359514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering a monolignol 4-O-methyltransferase with high selectivity for the condensed lignin precursor coniferyl alcohol.
    Cai Y; Bhuiya MW; Shanklin J; Liu CJ
    J Biol Chem; 2015 Oct; 290(44):26715-24. PubMed ID: 26378240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of the methyltransferase component of Desulfitobacterium hafniense DCB-2 O-demethylase shed light on methyltetrahydrofolate formation.
    Sjuts H; Dunstan MS; Fisher K; Leys D
    Acta Crystallogr D Biol Crystallogr; 2015 Sep; 71(Pt 9):1900-8. PubMed ID: 26327380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thiols Act as Methyl Traps in the Biocatalytic Demethylation of Guaiacol Derivatives.
    Pompei S; Grimm C; Schiller C; Schober L; Kroutil W
    Angew Chem Int Ed Engl; 2021 Jul; 60(31):16906-16910. PubMed ID: 34057803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of an O-demethylase of Desulfitobacterium hafniense DCB-2.
    Studenik S; Vogel M; Diekert G
    J Bacteriol; 2012 Jul; 194(13):3317-26. PubMed ID: 22522902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thiols Act as Methyl Traps in the Biocatalytic Demethylation of Guaiacol Derivatives.
    Pompei S; Grimm C; Schiller C; Schober L; Kroutil W
    Angew Chem Weinheim Bergstr Ger; 2021 Jul; 133(31):17043-17047. PubMed ID: 38505659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymes involved in the anoxic utilization of phenyl methyl ethers by Desulfitobacterium hafniense DCB2 and Desulfitobacterium hafniense PCE-S.
    Kreher S; Schilhabel A; Diekert G
    Arch Microbiol; 2008 Oct; 190(4):489-95. PubMed ID: 18607569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biosynthesis of monolignols: a "metabolic grid", or independent pathways to guaiacyl and syringyl units?
    Dixon RA; Chen F; Guo D; Parvathi K
    Phytochemistry; 2001 Aug; 57(7):1069-84. PubMed ID: 11430980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic aryl-o-methyl-C labeling of model lignin monomers.
    Frazer AC; Bossert I; Young LY
    Appl Environ Microbiol; 1986 Jan; 51(1):80-3. PubMed ID: 16346977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the Selective Demethylation of Aryl Methyl Ethers with a Pseudomonas Rieske Monooxygenase.
    Lanfranchi E; Trajković M; Barta K; de Vries JG; Janssen DB
    Chembiochem; 2019 Jan; 20(1):118-125. PubMed ID: 30362644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of phenyl methyl ethers by Desulfitobacterium spp. and screening for the genes involved.
    Mingo FS; Studenik S; Diekert G
    FEMS Microbiol Ecol; 2014 Dec; 90(3):783-90. PubMed ID: 25290334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. O-demethylase from Acetobacterium dehalogenans--cloning, sequencing, and active expression of the gene encoding the corrinoid protein.
    Kaufmann F; Wohlfarth G; Diekert G
    Eur J Biochem; 1998 Oct; 257(2):515-21. PubMed ID: 9826201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity of cobalamin riboswitches in the corrinoid-producing organohalide respirer Desulfitobacterium hafniense.
    Choudhary PK; Duret A; Rohrbach-Brandt E; Holliger C; Sigel RK; Maillard J
    J Bacteriol; 2013 Nov; 195(22):5186-95. PubMed ID: 24039263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caffeoyl coenzyme A O-methyltransferase and lignin biosynthesis.
    Ye ZH; Zhong R; Morrison WH; Himmelsbach DS
    Phytochemistry; 2001 Aug; 57(7):1177-85. PubMed ID: 11430990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocatalytic system for comparatively assessing the functional association of monolignol cytochrome P450 monooxygenases with their redox partners.
    Zhao X; Liu CJ
    Methods Enzymol; 2022; 676():133-158. PubMed ID: 36280348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic pathway for conversion of the methyl group of aromatic methyl ethers to acetic acid by Clostridium thermoaceticum.
    el Kasmi A; Rajasekharan S; Ragsdale SW
    Biochemistry; 1994 Sep; 33(37):11217-24. PubMed ID: 7727373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenyl methyl ethers: novel electron donors for respiratory growth of Desulfitobacterium hafniense and Desulfitobacterium sp. strain PCE-S.
    Neumann A; Engelmann T; Schmitz R; Greiser Y; Orthaus A; Diekert G
    Arch Microbiol; 2004 Mar; 181(3):245-9. PubMed ID: 14758469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.