BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 36816580)

  • 1. Role of
    Mathew BJ; Gupta P; Naaz T; Rai R; Gupta S; Gupta S; Chaurasiya SK; Purwar S; Biswas D; Vyas AK; Singh AK
    Front Cell Infect Microbiol; 2023; 13():1109449. PubMed ID: 36816580
    [No Abstract]   [Full Text] [Related]  

  • 2. Pneumococcal modification of host sugars: a major contributor to colonization of the human airway?
    King SJ
    Mol Oral Microbiol; 2010 Feb; 25(1):15-24. PubMed ID: 20331791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunomodulatory Effects of Pneumococcal Extracellular Vesicles on Cellular and Humoral Host Defenses.
    Codemo M; Muschiol S; Iovino F; Nannapaneni P; Plant L; Wai SN; Henriques-Normark B
    mBio; 2018 Apr; 9(2):. PubMed ID: 29636428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mucosal Infections and Invasive Potential of Nonencapsulated
    Bradshaw JL; Pipkins HR; Keller LE; Pendarvis JK; McDaniel LS
    mBio; 2018 Jan; 9(1):. PubMed ID: 29339428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Editorial: Deceiving the host: mechanisms of immune evasion and survival by pneumococcal bacteria.
    Subramanian K; Banerjee A
    Front Cell Infect Microbiol; 2023; 13():1231253. PubMed ID: 37404724
    [No Abstract]   [Full Text] [Related]  

  • 6. Oligopeptide Transporters of Nonencapsulated Streptococcus pneumoniae Regulate CbpAC and PspA Expression and Reduce Complement-Mediated Clearance.
    Thompson CD; Bradshaw JL; Miller WS; Vidal AGJ; Vidal JE; Rosch JW; McDaniel LS; Keller LE
    mBio; 2023 Feb; 14(1):e0332522. PubMed ID: 36625598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biofilm formation avoids complement immunity and phagocytosis of Streptococcus pneumoniae.
    Domenech M; Ramos-Sevillano E; García E; Moscoso M; Yuste J
    Infect Immun; 2013 Jul; 81(7):2606-15. PubMed ID: 23649097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycan-metabolizing enzymes in microbe-host interactions: the Streptococcus pneumoniae paradigm.
    Hobbs JK; Pluvinage B; Boraston AB
    FEBS Lett; 2018 Dec; 592(23):3865-3897. PubMed ID: 29608212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pneumococcal lipoproteins involved in bacterial fitness, virulence, and immune evasion.
    Kohler S; Voß F; Gómez Mejia A; Brown JS; Hammerschmidt S
    FEBS Lett; 2016 Nov; 590(21):3820-3839. PubMed ID: 27508940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Pneumococcal Surface Proteins PspA and PspC Sequester Host C4-Binding Protein To Inactivate Complement C4b on the Bacterial Surface.
    Haleem KS; Ali YM; Yesilkaya H; Kohler T; Hammerschmidt S; Andrew PW; Schwaeble WJ; Lynch NJ
    Infect Immun; 2019 Jan; 87(1):. PubMed ID: 30323030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic Hydrolysis of Pneumococcal Capsular Polysaccharide Renders the Bacterium Vulnerable to Host Defense.
    Middleton DR; Paschall AV; Duke JA; Avci FY
    Infect Immun; 2018 Aug; 86(8):. PubMed ID: 29866907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Proteins and Pneumolysin of Encapsulated and Nonencapsulated Streptococcus pneumoniae Mediate Virulence in a Chinchilla Model of Otitis Media.
    Keller LE; Bradshaw JL; Pipkins H; McDaniel LS
    Front Cell Infect Microbiol; 2016; 6():55. PubMed ID: 27242973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unravelling the multiple functions of the architecturally intricate Streptococcus pneumoniae β-galactosidase, BgaA.
    Singh AK; Pluvinage B; Higgins MA; Dalia AB; Woodiga SA; Flynn M; Lloyd AR; Weiser JN; Stubbs KA; Boraston AB; King SJ
    PLoS Pathog; 2014 Sep; 10(9):e1004364. PubMed ID: 25210925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel role for the Streptococcus pneumoniae toxin pneumolysin in the assembly of biofilms.
    Shak JR; Ludewick HP; Howery KE; Sakai F; Yi H; Harvey RM; Paton JC; Klugman KP; Vidal JE
    mBio; 2013 Sep; 4(5):e00655-13. PubMed ID: 24023386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Characterization of N-glycan Degradation and Transport in Streptococcus pneumoniae and Its Contribution to Virulence.
    Robb M; Hobbs JK; Woodiga SA; Shapiro-Ward S; Suits MD; McGregor N; Brumer H; Yesilkaya H; King SJ; Boraston AB
    PLoS Pathog; 2017 Jan; 13(1):e1006090. PubMed ID: 28056108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diverse Mechanisms of Protective Anti-Pneumococcal Antibodies.
    Gingerich AD; Mousa JJ
    Front Cell Infect Microbiol; 2022; 12():824788. PubMed ID: 35155281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The LuxS/AI-2 Quorum-Sensing System of
    Yadav MK; Vidal JE; Go YY; Kim SH; Chae SW; Song JJ
    Front Cell Infect Microbiol; 2018; 8():138. PubMed ID: 29780750
    [No Abstract]   [Full Text] [Related]  

  • 18. Three surface exoglycosidases from Streptococcus pneumoniae, NanA, BgaA, and StrH, promote resistance to opsonophagocytic killing by human neutrophils.
    Dalia AB; Standish AJ; Weiser JN
    Infect Immun; 2010 May; 78(5):2108-16. PubMed ID: 20160017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanism of Streptococcus pneumoniae-targeting xenophagy recognition and evasion: Reinterpretation of pneumococci as intracellular bacteria.
    Ogawa M; Shizukuishi S; Akeda Y; Ohnishi M
    Microbiol Immunol; 2023 May; 67(5):224-227. PubMed ID: 36872456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. JMM Profile:
    Dao TH; Rosch JW
    J Med Microbiol; 2021 Nov; 70(11):. PubMed ID: 34779760
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.