These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 36816600)
1. NIR responsive nanoenzymes via photothermal ablation and hypoxia reversal to potentiate the STING-dependent innate antitumor immunity. Li Q; Yang M; Sun X; Wang Q; Yu B; Gong A; Zhang M; Du F Mater Today Bio; 2023 Apr; 19():100566. PubMed ID: 36816600 [TBL] [Abstract][Full Text] [Related]
2. Integrated manganese (III)-doped nanosystem for optimizing photothermal ablation: Amplifying hyperthermia-induced STING pathway and enhancing antitumor immunity. Xia J; Wang L; Shen T; Li P; Zhu P; Xie S; Chen Z; Zhou F; Zhang J; Ling J; Liu X; Yu H; Sun J Acta Biomater; 2023 Jan; 155():601-617. PubMed ID: 36400350 [TBL] [Abstract][Full Text] [Related]
3. Multifunctional nanoparticles precisely reprogram the tumor microenvironment and potentiate antitumor immunotherapy after near-infrared-II light-mediated photothermal therapy. Ge Y; Zhang J; Jin K; Ye Z; Wang W; Zhou Z; Ye J Acta Biomater; 2023 Sep; 167():551-563. PubMed ID: 37302731 [TBL] [Abstract][Full Text] [Related]
5. Hypoxia Reversion and STING Pathway Activation through Large Mesoporous Nanozyme for Near-Infrared-II Light Amplified Tumor Polymetallic-Immunotherapy. Qu C; Shao X; Jia R; Song G; Shi D; Wang H; Wang J; An H ACS Nano; 2024 Aug; 18(33):22153-22171. PubMed ID: 39118372 [TBL] [Abstract][Full Text] [Related]
6. Photothermal-triggered immunogenic nanotherapeutics for optimizing osteosarcoma therapy by synergizing innate and adaptive immunity. Liu K; Liao Y; Zhou Z; Zhang L; Jiang Y; Lu H; Xu T; Yang D; Gao Q; Li Z; Tan S; Cao W; Chen F; Li G Biomaterials; 2022 Mar; 282():121383. PubMed ID: 35074635 [TBL] [Abstract][Full Text] [Related]
7. Outer membrane vesicle-wrapped manganese nanoreactor for augmenting cancer metalloimmunotherapy through hypoxia attenuation and immune stimulation. Luo S; Yang Y; Chen L; Kannan PR; Yang W; Zhang Y; Zhao R; Liu X; Li Y; Kong X Acta Biomater; 2024 Jun; 181():402-414. PubMed ID: 38734282 [TBL] [Abstract][Full Text] [Related]
8. Triple Tumor Microenvironment-Responsive Ferroptosis Pathways Induced by Manganese-Based Imageable Nanoenzymes for Enhanced Breast Cancer Theranostics. He H; Du L; Xue H; An Y; Zeng K; Huang H; He Y; Zhang C; Wu J; Shuai X Small Methods; 2023 Jul; 7(7):e2300230. PubMed ID: 37096886 [TBL] [Abstract][Full Text] [Related]
9. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Lv M; Chen M; Zhang R; Zhang W; Wang C; Zhang Y; Wei X; Guan Y; Liu J; Feng K; Jing M; Wang X; Liu YC; Mei Q; Han W; Jiang Z Cell Res; 2020 Nov; 30(11):966-979. PubMed ID: 32839553 [TBL] [Abstract][Full Text] [Related]
10. Bimetallic infinite coordination nanopolymers via phototherapy and STING activation for eliciting robust antitumor immunity. Sun X; Zhang S; Li Q; Yang M; Qiu X; Yu B; Wu C; Su Z; Du F; Zhang M J Colloid Interface Sci; 2023 Jul; 642():691-704. PubMed ID: 37037075 [TBL] [Abstract][Full Text] [Related]
11. Dual-Modality Imaging-Guided Manganese-Based Nanotransformer for Enhanced Gas-Photothermal Therapy Combined Immunotherapeutic Strategy Against Triple-Negative Breast Cancer. Guan X; Zeng N; Zhao Y; Huang X; Lai S; Shen G; Zhang W; Wang N; Yao W; Guo Y; Yang R; Wang Z; Jiang X Small; 2024 May; 20(22):e2307961. PubMed ID: 38126911 [TBL] [Abstract][Full Text] [Related]
12. Activatable Mn Liang Q; Chen J; Hou S; Li D; Zhu Y; Li R; Chen L; Li J; Fu W; Lei S; Zhang B; Zheng X; Zhang T; Duan H; He W; Ren J Biomaterials; 2023 Sep; 300():122206. PubMed ID: 37348325 [TBL] [Abstract][Full Text] [Related]
13. Responsive manganese-based nanoplatform amplifying cGAS-STING activation for immunotherapy. He Q; Zheng R; Ma J; Zhao L; Shi Y; Qiu J Biomater Res; 2023 Apr; 27(1):29. PubMed ID: 37061706 [TBL] [Abstract][Full Text] [Related]
14. Biomineralized MnO Deng Z; Xi M; Zhang C; Wu X; Li Q; Wang C; Fang H; Sun G; Zhang Y; Yang G; Liu Z ACS Nano; 2023 Mar; 17(5):4495-4506. PubMed ID: 36848115 [TBL] [Abstract][Full Text] [Related]
15. Glutathione degradable manganese-doped polydopamine nanoparticles for photothermal therapy and cGAS-STING activated immunotherapy of lung tumor. Lin H; Jiang C; Wang B; Wang Y; Shangguan Z; Wu Y; Wang X; Huang Y; Wang L; Chen P; Li X; Zhong Z; Wu S J Colloid Interface Sci; 2024 Jun; 663():167-176. PubMed ID: 38401438 [TBL] [Abstract][Full Text] [Related]
16. Mn Ling K; Zheng J; Jiang X; Huang W; Mai Y; Liao C; Fan S; Bu J; Li R; Zeng B; Zheng Q; Huang R; Li Z; Wong NK; Jiang H ACS Nano; 2024 Jan; 18(4):2841-2860. PubMed ID: 38251849 [TBL] [Abstract][Full Text] [Related]
17. Multi-Metallic Nanosheets Reshaping Immunosuppressive Tumor Microenvironment through Augmenting cGAS-STING Innate Activation and Adaptive Immune Responses for Cancer Immunotherapy. Peng Y; Liang S; Liu D; Ma K; Yun K; Zhou M; Hai L; Xu M; Chen Y; Wang Z Adv Sci (Weinh); 2024 Oct; 11(38):e2403347. PubMed ID: 39120546 [TBL] [Abstract][Full Text] [Related]
18. Extracellular matrix-degrading STING nanoagonists for mild NIR-II photothermal-augmented chemodynamic-immunotherapy. Zhan M; Yu X; Zhao W; Peng Y; Peng S; Li J; Lu L J Nanobiotechnology; 2022 Jan; 20(1):23. PubMed ID: 34991618 [TBL] [Abstract][Full Text] [Related]
19. Manganese-Based Nanoactivator Optimizes Cancer Immunotherapy Hou L; Tian C; Yan Y; Zhang L; Zhang H; Zhang Z ACS Nano; 2020 Apr; 14(4):3927-3940. PubMed ID: 32298077 [TBL] [Abstract][Full Text] [Related]
20. Manganese Coordination Micelles That Activate Stimulator of Interferon Genes and Capture In Situ Tumor Antigens for Cancer Metalloimmunotherapy. Li J; Ren H; Qiu Q; Yang X; Zhang J; Zhang C; Sun B; Lovell JF; Zhang Y ACS Nano; 2022 Oct; 16(10):16909-16923. PubMed ID: 36200692 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]