BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36816669)

  • 1. Complexity of the Role of Various Site-Specific and Selective Sudlow Binding Site Drugs in the Energetics and Stability of the Acridinedione Dye-Bovine Serum Albumin Complex: A Molecular Docking Approach.
    Vinod SM; Murugan Sreedevi S; Krishnan A; Ravichandran K; Karthikeyan P; Kotteswaran B; Rajendran K
    ACS Omega; 2023 Feb; 8(6):5634-5654. PubMed ID: 36816669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of acridinedione dye with a globular protein in the presence of site selective and site specific binding drugs: Photophysical techniques assisted by molecular docking methods.
    Anju K; Shoba G; Sumita A; Balakumaran MD; Vasanthi R; Kumaran R
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Sep; 258():119814. PubMed ID: 33932635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of an Aldose Sugar with Photoinduced Electron Transfer (PET) and Non-PET Based Acridinedione Dyes in Water: Hydrogen-bonding Evidences from Fluorescence Spectral Techniques Assisted by Molecular Docking Approach.
    Vinod SM; Murugan Sreedevi S; Krishnan A; Perumal T; Chinnadurai R; Rajendran K
    J Fluoresc; 2023 Mar; 33(2):471-486. PubMed ID: 36445509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environment sensitive fluorescent analogue of biologically active oxazoles differentially recognizes human serum albumin and bovine serum albumin: Photophysical and molecular modeling studies.
    Maiti J; Biswas S; Chaudhuri A; Chakraborty S; Chakraborty S; Das R
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 175():191-199. PubMed ID: 28039847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical Investigation and Molecular Docking Techniques on the Interaction of Acridinedione Dyes with Water-Soluble Nonfluorophoric Simple Amino Acids.
    Anupurath S; Rajaraman V; Gunasekaran S; Krishnan A; Sreedevi SM; Vinod SM; Dakshinamoorthi BM; Rajendran K
    ACS Omega; 2021 Nov; 6(46):30932-30941. PubMed ID: 34841136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is the Sudlow site I of human serum albumin more generous to adopt prospective anti-cancer bioorganic compound than that of bovine: A combined spectroscopic and docking simulation approach.
    Joshi R; Jadhao M; Kumar H; Ghosh SK
    Bioorg Chem; 2017 Dec; 75():332-346. PubMed ID: 29096094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fluorescence approach on the investigation of urea derivatives interaction with a non-PET based acridinedione dye-beta Cyclodextrin (β-CD) complex in water: Hydrogen-bonding interaction or hydrophobic influences or combined effect?
    Krishnan A; Viruthachalam T; Rajendran K
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 246():118990. PubMed ID: 33038856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-selective interactions: squaraine dye-serum albumin complexes with enhanced fluorescence and triplet yields.
    Jisha VS; Arun KT; Hariharan M; Ramaiah D
    J Phys Chem B; 2010 May; 114(17):5912-9. PubMed ID: 20380473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multispectroscopic insight, morphological analysis and molecular docking studies of Cu
    Yousuf I; Bashir M; Arjmand F; Tabassum S
    J Biomol Struct Dyn; 2019 Aug; 37(12):3290-3304. PubMed ID: 30124142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic Methodology and Molecular Docking Studies on Changes in Binding Interaction of Felodipine with Bovine Serum Albumin Induced by Cocrystallization with β-Resorcylic Acid.
    Li C; Du P; Zhou M; Yang L; Zhang H; Wang J; Yang C
    Chem Pharm Bull (Tokyo); 2020; 68(10):946-953. PubMed ID: 32999146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the interactions of mapenterol with serum albumins using multi-spectroscopy and molecular docking.
    Bi S; Zhao T; Wang Y; Zhou H
    Luminescence; 2016 Mar; 31(2):372-379. PubMed ID: 26179292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the binding of chrysoidine, an illegal food additive to bovine serum albumin.
    Yang B; Hao F; Li J; Wei K; Wang W; Liu R
    Food Chem Toxicol; 2014 Mar; 65():227-32. PubMed ID: 24394486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impacts of hydrophobicity and ionicity of phendione-based cobalt(II)/(III) complexes on binding with bovine serum albumin.
    Nehru S; Anitha Priya JA; Hariharan S; Vijay Solomon R; Veeralakshmi S
    J Biomol Struct Dyn; 2020 Apr; 38(7):2057-2067. PubMed ID: 31146641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-selective binding and dual mode recognition of serum albumin by a squaraine dye.
    Jisha VS; Arun KT; Hariharan M; Ramaiah D
    J Am Chem Soc; 2006 May; 128(18):6024-5. PubMed ID: 16669657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering the complexation process of a fluoroquinolone antibiotic, levofloxacin, with bovine serum albumin in the presence of additives.
    Kaur A; Khan IA; Banipal PK; Banipal TS
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Feb; 191():259-270. PubMed ID: 29045929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of pirenzepine with bovine serum albumin and effect of β-cyclodextrin on binding: A biophysical and molecular docking approach.
    Rahman Y; Afrin S; Tabish M
    Arch Biochem Biophys; 2018 Aug; 652():27-37. PubMed ID: 29908138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potent cyclometallated Pd(II) antitumor complexes bearing α-amino acids: synthesis, structural characterization, DNA/BSA binding, cytotoxicity and molecular dynamics simulation.
    Abedanzadeh S; Karami K; Rahimi M; Edalati M; Abedanzadeh M; Tamaddon AM; Jahromi MD; Amirghofran Z; Lipkowski J; Lyczko K
    Dalton Trans; 2020 Nov; 49(42):14891-14907. PubMed ID: 33075117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of intermolecular interaction between cyanidin-3-glucoside and bovine serum albumin: spectroscopic and molecular docking methods.
    Shi JH; Wang J; Zhu YY; Chen J
    Luminescence; 2014 Aug; 29(5):522-30. PubMed ID: 24123897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing the interactions of the antipsychotic drug trifluoperazine with bovine serum albumin: Probing the drug-protein and drug-drug interactions using multi-spectroscopic approaches.
    Raghav D; Mahanty S; Rathinasamy K
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 226():117584. PubMed ID: 31698317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of interactions of simvastatin, pravastatin, fluvastatin, and pitavastatin with bovine serum albumin: multiple spectroscopic and molecular docking.
    Shi JH; Wang Q; Pan DQ; Liu TT; Jiang M
    J Biomol Struct Dyn; 2017 May; 35(7):1529-1546. PubMed ID: 27484332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.