These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 36816858)

  • 21. Chemisorption of Hydroxide on 2D Materials from DFT Calculations: Graphene versus Hexagonal Boron Nitride.
    Grosjean B; Pean C; Siria A; Bocquet L; Vuilleumier R; Bocquet ML
    J Phys Chem Lett; 2016 Nov; 7(22):4695-4700. PubMed ID: 27809540
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adsorption energy of oxygen molecules on graphene and two-dimensional tungsten disulfide.
    Bagsican FR; Winchester A; Ghosh S; Zhang X; Ma L; Wang M; Murakami H; Talapatra S; Vajtai R; Ajayan PM; Kono J; Tonouchi M; Kawayama I
    Sci Rep; 2017 May; 7(1):1774. PubMed ID: 28496178
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nano-atomic scale hydrophobic/philic confinement of peptides on mineral surfaces by cross-correlated SPM and quantum mechanical DFT analysis.
    Moro D; Ulian G; ValdrÈ G
    J Microsc; 2020 Dec; 280(3):204-221. PubMed ID: 32458447
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces.
    Qin W; Li X; Bian WW; Fan XJ; Qi JY
    Biomaterials; 2010 Feb; 31(5):1007-16. PubMed ID: 19880174
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two-dimensional material confined water.
    Li Q; Song J; Besenbacher F; Dong M
    Acc Chem Res; 2015 Jan; 48(1):119-27. PubMed ID: 25539031
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Origin of Nanoscale Friction Contrast between Supported Graphene, MoS
    Vazirisereshk MR; Ye H; Ye Z; Otero-de-la-Roza A; Zhao MQ; Gao Z; Johnson ATC; Johnson ER; Carpick RW; Martini A
    Nano Lett; 2019 Aug; 19(8):5496-5505. PubMed ID: 31267757
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unravelling the distinct surface interactions of modified graphene nanostructures with methylene blue dye through experimental and computational approaches.
    Manappadan Z; Kumar S; Joshi K; Govindaraja T; Krishnamurty S; Selvaraj K
    J Hazard Mater; 2020 Apr; 388():121755. PubMed ID: 31796357
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular interactions between pre-formed metal nanoparticles and graphene families.
    Low S; Shon YS
    Adv Nano Res; 2018 Dec; 6(4):357-375. PubMed ID: 30740387
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanoscale Electrochemistry of sp(2) Carbon Materials: From Graphite and Graphene to Carbon Nanotubes.
    Unwin PR; Güell AG; Zhang G
    Acc Chem Res; 2016 Sep; 49(9):2041-8. PubMed ID: 27501067
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling the adsorption equilibrium of small-molecule gases on graphene: effect of the volume to surface ratio.
    Conti S; Cecchini M
    Phys Chem Chem Phys; 2018 Apr; 20(15):9770-9779. PubMed ID: 29388642
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational approaches to dissociative chemisorption on metals: towards chemical accuracy.
    Kroes GJ
    Phys Chem Chem Phys; 2021 Apr; 23(15):8962-9048. PubMed ID: 33885053
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Confined catalysis under two-dimensional materials.
    Li H; Xiao J; Fu Q; Bao X
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):5930-5934. PubMed ID: 28533413
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-Resolution Three-Dimensional Sculpting of Two-Dimensional Graphene Oxide by E-Beam Direct Write.
    Kim S; Jung S; Lee J; Kim S; Fedorov AG
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39595-39601. PubMed ID: 32805878
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interference Provides Clarity: Direct Observation of 2D Materials at Fluid-Fluid Interfaces.
    Goggin DM; Zhang H; Miller EM; Samaniuk JR
    ACS Nano; 2020 Jan; 14(1):777-790. PubMed ID: 31820924
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Water wettability of graphene: interplay between the interfacial water structure and the electronic structure.
    Liu J; Lai CY; Zhang YY; Chiesa M; Pantelides ST
    RSC Adv; 2018 May; 8(30):16918-16926. PubMed ID: 35540542
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface chemistry and catalysis confined under two-dimensional materials.
    Fu Q; Bao X
    Chem Soc Rev; 2017 Apr; 46(7):1842-1874. PubMed ID: 27722323
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Graphene-based materials for adsorptive removal of pollutants from water and underlying interaction mechanism.
    Wang J; Zhang J; Han L; Wang J; Zhu L; Zeng H
    Adv Colloid Interface Sci; 2021 Mar; 289():102360. PubMed ID: 33540288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Noncovalent interactions between cisplatin and graphene prototypes.
    Cuevas-Flores MDR; Garcia-Revilla MA; Bartolomei M
    J Comput Chem; 2018 Jan; 39(2):71-80. PubMed ID: 28833256
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adsorption at Nanoconfined Solid-Water Interfaces.
    Ilgen AG; Leung K; Criscenti LJ; Greathouse JA
    Annu Rev Phys Chem; 2023 Apr; 74():169-191. PubMed ID: 36737676
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Submolecular Insights into Interfacial Water by Hydrogen-Sensitive Scanning Probe Microscopy.
    Guo J; Jiang Y
    Acc Chem Res; 2022 Jun; 55(12):1680-1692. PubMed ID: 35678704
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.