These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 3681704)

  • 1. Stumbling reactions in man: significance of proprioceptive and pre-programmed mechanisms.
    Dietz V; Quintern J; Sillem M
    J Physiol; 1987 May; 386():149-63. PubMed ID: 3681704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corrective reactions to stumbling in man: neuronal co-ordination of bilateral leg muscle activity during gait.
    Berger W; Dietz V; Quintern J
    J Physiol; 1984 Dec; 357():109-25. PubMed ID: 6512687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interlimb coordination of leg-muscle activation during perturbation of stance in humans.
    Dietz V; Horstmann GA; Berger W
    J Neurophysiol; 1989 Sep; 62(3):680-93. PubMed ID: 2769353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between vestibular and proprioceptive inputs triggering and modulating human balance-correcting responses differ across muscles.
    Allum JH; Honegger F
    Exp Brain Res; 1998 Aug; 121(4):478-94. PubMed ID: 9746156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is lower leg proprioception essential for triggering human automatic postural responses?
    Bloem BR; Allum JH; Carpenter MG; Honegger F
    Exp Brain Res; 2000 Feb; 130(3):375-91. PubMed ID: 10706436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebral potentials and leg muscle e.m.g. responses associated with stance perturbation.
    Dietz V; Quintern J; Berger W; Schenck E
    Exp Brain Res; 1985; 57(2):348-54. PubMed ID: 3972035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compensatory movements following gait perturbations: changes in cinematic and muscular activation patterns.
    Gollhofer A; Schmidtbleicher D; Quintern J; Dietz V
    Int J Sports Med; 1986 Dec; 7(6):325-9. PubMed ID: 3804540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in coding provided by proprioceptive and vestibular sensory signals may contribute to lateral instability in vestibular loss subjects.
    Allum JH; Oude Nijhuis LB; Carpenter MG
    Exp Brain Res; 2008 Jan; 184(3):391-410. PubMed ID: 17849108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscular responses and movement strategies during stumbling over obstacles.
    Schillings AM; van Wezel BM; Mulder T; Duysens J
    J Neurophysiol; 2000 Apr; 83(4):2093-102. PubMed ID: 10758119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Significance of proprioceptive mechanisms in the regulation of stance.
    Dietz V; Horstmann GA; Berger W
    Prog Brain Res; 1989; 80():419-23; discussion 395-7. PubMed ID: 2634280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of the startle response during human gait.
    Nieuwenhuijzen PH; Schillings AM; Van Galen GP; Duysens J
    J Neurophysiol; 2000 Jul; 84(1):65-74. PubMed ID: 10899184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stretch reflex distinguished from pre-programmed muscle activations following landing impacts in man.
    Duncan A; McDonagh MJ
    J Physiol; 2000 Jul; 526 Pt 2(Pt 2):457-68. PubMed ID: 10896734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corrective reactions to stumbling in man: functional significance of spinal and transcortical reflexes.
    Dietz V; Quintern J; Berger W
    Neurosci Lett; 1984 Feb; 44(2):131-5. PubMed ID: 6709228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss.
    Bloem BR; Allum JH; Carpenter MG; Verschuuren JJ; Honegger F
    Exp Brain Res; 2002 Jan; 142(1):91-107. PubMed ID: 11797087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered phase-transitions in tibialis anterior and medial gastrocnemius during walking after limbsaving surgery.
    De Visser E; Veth RP; Schreuder HW; Duysens J
    Clin Neurophysiol; 2005 Dec; 116(12):2741-7. PubMed ID: 16249120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebral evoked potentials associated with the compensatory reactions following stance and gait perturbation.
    Dietz V; Quintern J; Berger W
    Neurosci Lett; 1984 Sep; 50(1-3):181-6. PubMed ID: 6493623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of peripheral afferents and spinal reflexes in normal and impaired human locomotion.
    Dietz V
    Rev Neurol (Paris); 1987; 143(4):241-54. PubMed ID: 3629074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short-latency crossed responses in the human biceps femoris muscle.
    Stevenson AJ; Kamavuako EN; Geertsen SS; Farina D; Mrachacz-Kersting N
    J Physiol; 2015 Aug; 593(16):3657-71. PubMed ID: 25970767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Knee joint laxity affects muscle activation patterns in the healthy knee.
    Shultz SJ; Carcia CR; Perrin DH
    J Electromyogr Kinesiol; 2004 Aug; 14(4):475-83. PubMed ID: 15165597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.