BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36817339)

  • 1. Tuning of Mechanical Properties in Photopolymerizable Gelatin-Based Hydrogels for
    Pamplona R; González-Lana S; Romero P; Ochoa I; Martín-Rapún R; Sánchez-Somolinos C
    ACS Appl Polym Mater; 2023 Feb; 5(2):1487-1498. PubMed ID: 36817339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Mechanical and Biological Performance of Photopolymerized Gelatin-Based Hydrogels as a Function of the Reaction Media.
    Pamplona R; González-Lana S; Romero P; Ochoa I; Martín-Rapún R; Sánchez-Somolinos C
    Macromol Biosci; 2023 Dec; 23(12):e2300227. PubMed ID: 37572331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of gelatin-based hydrogels for colon and pancreas studies using 3D
    Pamplona R; González-Lana S; Ochoa I; Martín-Rapún R; Sánchez-Somolinos C
    J Mater Chem B; 2024 Mar; 12(12):3144-3160. PubMed ID: 38456751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward Adipose Tissue Engineering Using Thiol-Norbornene Photo-Crosslinkable Gelatin Hydrogels.
    Van Damme L; Van Hoorick J; Blondeel P; Van Vlierberghe S
    Biomacromolecules; 2021 Jun; 22(6):2408-2418. PubMed ID: 33950675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gelatin hydrogels formed by orthogonal thiol-norbornene photochemistry for cell encapsulation.
    Mũnoz Z; Shih H; Lin CC
    Biomater Sci; 2014 Aug; 2(8):1063-1072. PubMed ID: 32482001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced mechanical and cell adhesive properties of photo-crosslinked PEG hydrogels by incorporation of gelatin in the networks.
    Liang J; Guo Z; Timmerman A; Grijpma D; Poot A
    Biomed Mater; 2019 Jan; 14(2):024102. PubMed ID: 30524039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photopolymerization of cell-laden gelatin methacryloyl hydrogels using a dental curing light for regenerative dentistry.
    Monteiro N; Thrivikraman G; Athirasala A; Tahayeri A; França CM; Ferracane JL; Bertassoni LE
    Dent Mater; 2018 Mar; 34(3):389-399. PubMed ID: 29199008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stiffness modification of photopolymerizable gelatin-methacrylate hydrogels influences endothelial differentiation of human mesenchymal stem cells.
    Lin CH; Su JJ; Lee SY; Lin YM
    J Tissue Eng Regen Med; 2018 Oct; 12(10):2099-2111. PubMed ID: 30058281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Additive manufacturing of photo-crosslinked gelatin scaffolds for adipose tissue engineering.
    Tytgat L; Van Damme L; Van Hoorick J; Declercq H; Thienpont H; Ottevaere H; Blondeel P; Dubruel P; Van Vlierberghe S
    Acta Biomater; 2019 Aug; 94():340-350. PubMed ID: 31136829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic stiffening of cell-laden hydrogels via sequential thiol-ene and hydrazone click reactions.
    Chang CY; Johnson HC; Babb O; Fishel ML; Lin CC
    Acta Biomater; 2021 Aug; 130():161-171. PubMed ID: 34087443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Swelling Behaviors of 3D Printed Hydrogel and Hydrogel-Microcarrier Composite Scaffolds.
    Bittner SM; Pearce HA; Hogan KJ; Smoak MM; Guo JL; Melchiorri AJ; Scott DW; Mikos AG
    Tissue Eng Part A; 2021 Jun; 27(11-12):665-678. PubMed ID: 33470161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VA-086 methacrylate gelatine photopolymerizable hydrogels: A parametric study for highly biocompatible 3D cell embedding.
    Occhetta P; Visone R; Russo L; Cipolla L; Moretti M; Rasponi M
    J Biomed Mater Res A; 2015 Jun; 103(6):2109-17. PubMed ID: 25294368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning Superfast Curing Thiol-Norbornene-Functionalized Gelatin Hydrogels for 3D Bioprinting.
    Göckler T; Haase S; Kempter X; Pfister R; Maciel BR; Grimm A; Molitor T; Willenbacher N; Schepers U
    Adv Healthc Mater; 2021 Jul; 10(14):e2100206. PubMed ID: 34145799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gelatine methacrylamide-based hydrogels: an alternative three-dimensional cancer cell culture system.
    Kaemmerer E; Melchels FP; Holzapfel BM; Meckel T; Hutmacher DW; Loessner D
    Acta Biomater; 2014 Jun; 10(6):2551-62. PubMed ID: 24590158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing the Effects of Synergistic Thermal and Photo-Cross-Linking during Biofabrication on the Structural and Functional Properties of Gelatin Methacryloyl (GelMA) Hydrogels.
    Chansoria P; Asif S; Polkoff K; Chung J; Piedrahita JA; Shirwaiker RA
    ACS Biomater Sci Eng; 2021 Nov; 7(11):5175-5188. PubMed ID: 34597013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Dimensional-Printable Thermo/Photo-Cross-Linked Methacrylated Chitosan-Gelatin Hydrogel Composites for Tissue Engineering.
    Osi AR; Zhang H; Chen J; Zhou Y; Wang R; Fu J; Müller-Buschbaum P; Zhong Q
    ACS Appl Mater Interfaces; 2021 May; 13(19):22902-22913. PubMed ID: 33960765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gelatin Methacryloyl-Riboflavin (GelMA-RF) Hydrogels for Bone Regeneration.
    Goto R; Nishida E; Kobayashi S; Aino M; Ohno T; Iwamura Y; Kikuchi T; Hayashi JI; Yamamoto G; Asakura M; Mitani A
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33561941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids.
    Lin CC; Raza A; Shih H
    Biomaterials; 2011 Dec; 32(36):9685-95. PubMed ID: 21924490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-laden microengineered gelatin methacrylate hydrogels.
    Nichol JW; Koshy ST; Bae H; Hwang CM; Yamanlar S; Khademhosseini A
    Biomaterials; 2010 Jul; 31(21):5536-44. PubMed ID: 20417964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modular Cross-Linking of Gelatin-Based Thiol-Norbornene Hydrogels for
    Greene T; Lin CC
    ACS Biomater Sci Eng; 2015 Dec; 1(12):1314-1323. PubMed ID: 33429678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.