These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36818691)

  • 1. Assessment of Galileo High Accuracy Service (HAS) test signals and preliminary positioning performance.
    Naciri N; Yi D; Bisnath S; de Blas FJ; Capua R
    GPS Solut; 2023; 27(2):73. PubMed ID: 36818691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precise Point Positioning Using Triple GNSS Constellations in Various Modes.
    Afifi A; El-Rabbany A
    Sensors (Basel); 2016 May; 16(6):. PubMed ID: 27240376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of BeiDou-3 and Multi-GNSS Precise Point Positioning Performance.
    Jiao G; Song S; Ge Y; Su K; Liu Y
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31159245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Impact of Satellite Time Group Delay and Inter-Frequency Differential Code Bias Corrections on Multi-GNSS Combined Positioning.
    Ge Y; Zhou F; Sun B; Wang S; Shi B
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28300787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring Signals on L5/E5a/B2a for Dual-Frequency GNSS Precise Point Positioning.
    Naciri N; Hauschild A; Bisnath S
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33799416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the GPS Precise Orbit and Clock Corrections from MADOCA Real-Time Products.
    Zhang S; Du S; Li W; Wang G
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31174327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the Performance of Time-Relative GNSS Precise Positioning in Remote Areas.
    He K; Weng D; Ji S; Wang Z; Chen W; Lu Y; Nie Z
    Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33406691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signal-in-space range error and positioning accuracy of BDS-3.
    Liu W; Jiao B; Hao J; Lv Z; Xie J; Liu J
    Sci Rep; 2022 May; 12(1):8181. PubMed ID: 35581270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance Limits of GNSS Code-based Precise Positioning: GPS, Galileo & Meta-Signals.
    Das P; Ortega L; VilĂ -Valls J; Vincent F; Chaumette E; Davain L
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32295045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance Analysis of Real-Time GPS/Galileo Precise Point Positioning Integrated with Inertial Navigation System.
    Zhao L; Blunt P; Yang L; Ince S
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time tropospheric delay retrieval with GPS, GLONASS, Galileo and BDS data.
    Pan L; Guo F
    Sci Rep; 2018 Nov; 8(1):17067. PubMed ID: 30459438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global Ionospheric Modelling using Multi-GNSS: BeiDou, Galileo, GLONASS and GPS.
    Ren X; Zhang X; Xie W; Zhang K; Yuan Y; Li X
    Sci Rep; 2016 Sep; 6():33499. PubMed ID: 27629988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance Analysis of Several GPS/Galileo Precise Point Positioning Models.
    Afifi A; El-Rabbany A
    Sensors (Basel); 2015 Jun; 15(6):14701-26. PubMed ID: 26102495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ambiguity of Residual Constraint-Based Precise Point Positioning with Partial Ambiguity Resolution under No Real-Time Network Corrections Using Real Global Positioning System (GPS) Data.
    Qin H; Liu P; Cong L; Xue X
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32517124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of "Galileo High Accuracy Service" on Single-Point Positioning.
    Angrisano A; Ascione S; Cappello G; Gioia C; Gaglione S
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Using GPS L2 Receiver Antenna Corrections for the Galileo E5a Frequency on Position Estimates.
    Araszkiewicz A; Kiliszek D
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of the Accuracy and Convergence Time of Real Time Kinematic Results Using a Single Galileo Navigation System.
    Siejka Z
    Sensors (Basel); 2018 Jul; 18(8):. PubMed ID: 30044401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-Time PPP Based on the Coupling Estimation of Clock Bias and Orbit Error with Broadcast Ephemeris.
    Pan S; Chen W; Jin X; Shi X; He F
    Sensors (Basel); 2015 Jul; 15(7):17808-26. PubMed ID: 26205276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Post-Processed Pseudorange-Based Point Positioning with Different Data Sources for the Current Galileo Constellations.
    Zhang J; Li W
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance Evaluation of Triple-Frequency GPS/Galileo Techniques for Precise Static and Kinematic Applications.
    Abd Rabbou M; Abdelazeem M; Morsy S
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34068123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.