These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36818832)

  • 1. Genome-wide identification and validation of tomato-encoded sRNA as the cross-species antifungal factors targeting the virulence genes of
    Wu F; Huang Y; Jiang W; Jin W
    Front Plant Sci; 2023; 14():1072181. PubMed ID: 36818832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular characterization reveals no functional evidence for naturally occurring cross-kingdom RNA interference in the early stages of Botrytis cinerea-tomato interaction.
    Qin S; Veloso J; Baak M; Boogmans B; Bosman T; Puccetti G; Shi-Kunne X; Smit S; Grant-Downton R; Leisen T; Hahn M; van Kan JAL
    Mol Plant Pathol; 2023 Jan; 24(1):3-15. PubMed ID: 36168919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular characterization of cross-kingdom RNA interference in
    Qin S; Veloso J; Puccetti G; van Kan JAL
    Front Plant Sci; 2023; 14():1107888. PubMed ID: 36968352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel tomato miRNA miR1001 initiates cross-species regulation to suppress the conidiospore germination and infection virulence of Botrytis cinerea in vitro.
    Meng X; Jin W; Wu F
    Gene; 2020 Oct; 759():145002. PubMed ID: 32726608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Small RNA and Degradome Sequencing Provides Insights into Antagonistic Interactions in the Biocontrol Fungus Clonostachys rosea.
    Piombo E; Vetukuri RR; Sundararajan P; Kushwaha S; Funck Jensen D; Karlsson M; Dubey M
    Appl Environ Microbiol; 2022 Jul; 88(13):e0064322. PubMed ID: 35695572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Botrytis small RNA Bc-siR37 suppresses plant defense genes by cross-kingdom RNAi.
    Wang M; Weiberg A; Dellota E; Yamane D; Jin H
    RNA Biol; 2017 Apr; 14(4):421-428. PubMed ID: 28267415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery and profiling of small RNAs from Puccinia triticina by deep sequencing and identification of their potential targets in wheat.
    Dubey H; Kiran K; Jaswal R; Jain P; Kayastha AM; Bhardwaj SC; Mondal TK; Sharma TR
    Funct Integr Genomics; 2019 May; 19(3):391-407. PubMed ID: 30618015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection.
    Wang M; Weiberg A; Lin FM; Thomma BP; Huang HD; Jin H
    Nat Plants; 2016 Sep; 2():16151. PubMed ID: 27643635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes.
    Cai Q; Qiao L; Wang M; He B; Lin FM; Palmquist J; Huang SD; Jin H
    Science; 2018 Jun; 360(6393):1126-1129. PubMed ID: 29773668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of BvgA-Dependent and BvgA-Independent Small RNAs (sRNAs) in Bordetella pertussis Using the Prokaryotic sRNA Prediction Toolkit ANNOgesic.
    Moon K; Sim M; Tai CH; Yoo K; Merzbacher C; Yu SH; Kim DD; Lee J; Förstner KU; Chen Q; Stibitz S; Knipling LG; Hinton DM
    Microbiol Spectr; 2021 Oct; 9(2):e0004421. PubMed ID: 34550019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of miRNAs associated with Botrytis cinerea infection of tomato leaves.
    Jin W; Wu F
    BMC Plant Biol; 2015 Jan; 15():1. PubMed ID: 25592487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the Common Mechanism of Fungal sRNA Transboundary Regulation of Plants Based on Ensemble Learning Methods.
    Chi J; Zhang H; Zhang T; Zhao E; Zhao T; Zhao H; Yuan S
    Front Genet; 2022; 13():816478. PubMed ID: 35222537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small RNAs from
    van Kleeff PJ; Galland M; Schuurink RC; Bleeker PM
    Front Plant Sci; 2016; 7():1759. PubMed ID: 27933079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulating plant primary amino acid metabolism as a necrotrophic virulence strategy: the immune-regulatory role of asparagine synthetase in Botrytis cinerea-tomato interaction.
    Seifi H; De Vleesschauwer D; Aziz A; Höfte M
    Plant Signal Behav; 2014; 9(2):e27995. PubMed ID: 24521937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico prediction and validation of potential gene targets for pospiviroid-derived small RNAs during tomato infection.
    Avina-Padilla K; Martinez de la Vega O; Rivera-Bustamante R; Martinez-Soriano JP; Owens RA; Hammond RW; Vielle-Calzada JP
    Gene; 2015 Jun; 564(2):197-205. PubMed ID: 25862922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. miR319c acts as a positive regulator of tomato against Botrytis cinerea infection by targeting TCP29.
    Wu F; Qi J; Meng X; Jin W
    Plant Sci; 2020 Nov; 300():110610. PubMed ID: 33180702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transboundary milRNAs: Indispensable molecules in the process of Trichoderma breve T069 mycoparasitism of Botrytis cinerea.
    Liu Z; Li Y; Hou J; Liu T
    Pestic Biochem Physiol; 2023 Nov; 196():105599. PubMed ID: 37945247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological control of Botrytis cinerea on tomato plants using Streptomyces ahygroscopicus strain CK-15.
    Ge BB; Cheng Y; Liu Y; Liu BH; Zhang KC
    Lett Appl Microbiol; 2015 Dec; 61(6):596-602. PubMed ID: 26400053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways.
    Zhang Y; Li D; Zhang H; Hong Y; Huang L; Liu S; Li X; Ouyang Z; Song F
    BMC Plant Biol; 2015 Oct; 15():252. PubMed ID: 26490733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA silencing proteins and small RNAs in oomycete plant pathogens and biocontrol agents.
    Piombo E; Kelbessa BG; Sundararajan P; Whisson SC; Vetukuri RR; Dubey M
    Front Microbiol; 2023; 14():1076522. PubMed ID: 37032886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.