These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36818832)

  • 21. Genome-wide identification and characterization of phased small interfering RNA genes in response to Botrytis cinerea infection in Solanum lycopersicum.
    Wu F; Chen Y; Tian X; Zhu X; Jin W
    Sci Rep; 2017 Jun; 7(1):3019. PubMed ID: 28596514
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Small RNA Regulators of Plant-Hemipteran Interactions: Micromanagers with Versatile Roles.
    Sattar S; Thompson GA
    Front Plant Sci; 2016; 7():1241. PubMed ID: 27625654
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plant nitrogen supply affects the Botrytis cinerea infection process and modulates known and novel virulence factors.
    Soulie MC; Koka SM; Floch K; Vancostenoble B; Barbe D; Daviere A; Soubigou-Taconnat L; Brunaud V; Poussereau N; Loisel E; Devallee A; Expert D; Fagard M
    Mol Plant Pathol; 2020 Nov; 21(11):1436-1450. PubMed ID: 32939948
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RNA-binding proteins contribute to small RNA loading in plant extracellular vesicles.
    He B; Cai Q; Qiao L; Huang CY; Wang S; Miao W; Ha T; Wang Y; Jin H
    Nat Plants; 2021 Mar; 7(3):342-352. PubMed ID: 33633358
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two virulent sRNAs identified by genomic sequencing target the type III secretion system in rice bacterial blight pathogen.
    Hu Y; Zhang L; Wang X; Sun F; Kong X; Dong H; Xu H
    BMC Plant Biol; 2018 Oct; 18(1):237. PubMed ID: 30326834
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of small interfering RNAs derived from the geminivirus/betasatellite complex using deep sequencing.
    Yang X; Wang Y; Guo W; Xie Y; Xie Q; Fan L; Zhou X
    PLoS One; 2011 Feb; 6(2):e16928. PubMed ID: 21347388
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fungal small RNAs ride in extracellular vesicles to enter plant cells through clathrin-mediated endocytosis.
    He B; Wang H; Liu G; Chen A; Calvo A; Cai Q; Jin H
    bioRxiv; 2023 Jun; ():. PubMed ID: 37398405
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comprehensive review of small regulatory RNAs in
    King KA; Caudill MT; Caswell CC
    Front Vet Sci; 2022; 9():1026220. PubMed ID: 36532353
    [No Abstract]   [Full Text] [Related]  

  • 29. Host-induced gene silencing of BcTOR in Botrytis cinerea enhances plant resistance to grey mould.
    Xiong F; Liu M; Zhuo F; Yin H; Deng K; Feng S; Liu Y; Luo X; Feng L; Zhang S; Li Z; Ren M
    Mol Plant Pathol; 2019 Dec; 20(12):1722-1739. PubMed ID: 31622007
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of environmental factors on Streptomyces spp. metabolites against Botrytis cinerea.
    Boukaew S; Yossan S; Cheirsilp B; Prasertsan P
    J Basic Microbiol; 2022 May; 62(5):611-622. PubMed ID: 35064583
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fungal small RNAs ride in extracellular vesicles to enter plant cells through clathrin-mediated endocytosis.
    He B; Wang H; Liu G; Chen A; Calvo A; Cai Q; Jin H
    Nat Commun; 2023 Jul; 14(1):4383. PubMed ID: 37474601
    [TBL] [Abstract][Full Text] [Related]  

  • 32. miR394 Acts as a Negative Regulator of
    Tian X; Song L; Wang Y; Jin W; Tong F; Wu F
    Front Plant Sci; 2018; 9():903. PubMed ID: 30018624
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro and in vivo antimicrobial activity of Xenorhabdus bovienii YL002 against Phytophthora capsici and Botrytis cinerea.
    Fang XL; Li ZZ; Wang YH; Zhang X
    J Appl Microbiol; 2011 Jul; 111(1):145-54. PubMed ID: 21554568
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-wide analysis of pectate-induced gene expression in Botrytis cinerea: identification and functional analysis of putative d-galacturonate transporters.
    Zhang L; Hua C; Stassen JHM; Chatterjee S; Cornelissen M; van Kan JAL
    Fungal Genet Biol; 2014 Nov; 72():182-191. PubMed ID: 24140151
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tetrandrine, a Potent Antifungal Agent, Inhibits Mycelial Growth and Virulence of
    Li P; Zou J; Dong Y; Jiang J; Liang W; Li D
    Phytopathology; 2021 Jul; 111(7):1152-1157. PubMed ID: 33289404
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Global Annotation, Expression Analysis, and Stability of Candidate sRNAs in Group B Streptococcus.
    Keogh RA; Spencer BL; Sorensen HM; Zapf RL; Briaud P; Bonsall AE; Doran KS; Carroll RK
    mBio; 2021 Dec; 12(6):e0280321. PubMed ID: 34724819
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MicroRNA396a-5p and -3p induce tomato disease susceptibility by suppressing target genes and upregulating salicylic acid.
    Chen L; Meng J; Zhai J; Xu P; Luan Y
    Plant Sci; 2017 Dec; 265():177-187. PubMed ID: 29223339
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Control efficiency and expressions of resistance genes in tomato plants treated with ε-poly-l-lysine against Botrytis cinerea.
    Sun G; Wang H; Shi B; Shangguan N; Wang Y; Ma Q
    Pestic Biochem Physiol; 2017 Nov; 143():191-198. PubMed ID: 29183591
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of histone epigenetic marks in Arabidopsis and tomato genes in the early response to Botrytis cinerea.
    Crespo-Salvador Ó; Escamilla-Aguilar M; López-Cruz J; López-Rodas G; González-Bosch C
    Plant Cell Rep; 2018 Jan; 37(1):153-166. PubMed ID: 29119291
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of novel growth phase- and media-dependent small non-coding RNAs in Streptococcus pyogenes M49 using intergenic tiling arrays.
    Patenge N; Billion A; Raasch P; Normann J; Wisniewska-Kucper A; Retey J; Boisguérin V; Hartsch T; Hain T; Kreikemeyer B
    BMC Genomics; 2012 Oct; 13():550. PubMed ID: 23062031
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.