BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 36819292)

  • 1. Image-spectral decomposition extended-learning assisted by sparsity for multi-energy computed tomography reconstruction.
    Wang S; Wu W; Cai A; Xu Y; Vardhanabhuti V; Liu F; Yu H
    Quant Imaging Med Surg; 2023 Feb; 13(2):610-630. PubMed ID: 36819292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-energy CT reconstruction using tensor nonlocal similarity and spatial sparsity regularization.
    Zhang W; Liang N; Wang Z; Cai A; Wang L; Tang C; Zheng Z; Li L; Yan B; Hu G
    Quant Imaging Med Surg; 2020 Oct; 10(10):1940-1960. PubMed ID: 33014727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Locally linear transform based three-dimensional gradient
    Wang Q; Wu W; Deng S; Zhu Y; Yu H
    Med Phys; 2020 Oct; 47(10):4810-4826. PubMed ID: 32740956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tensor decomposition and non-local means based spectral CT image denoising.
    Zhang Y; Salehjahromi M; Yu H
    J Xray Sci Technol; 2019; 27(3):397-416. PubMed ID: 31081796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-dose spectral reconstruction with global, local, and nonlocal priors based on subspace decomposition.
    Yu X; Cai A; Li L; Jiao Z; Yan B
    Quant Imaging Med Surg; 2023 Feb; 13(2):889-911. PubMed ID: 36819241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-dose spectral CT reconstruction using image gradient
    Wu W; Zhang Y; Wang Q; Liu F; Chen P; Yu H
    Appl Math Model; 2018 Nov; 63():538-557. PubMed ID: 32773921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Material decomposition for simulated dual-energy breast computed tomography via hybrid optimization method.
    Komolafe TE; Du Q; Zhang Y; Wu Z; Zhang C; Li M; Zheng J; Yang X
    J Xray Sci Technol; 2020; 28(6):1037-1054. PubMed ID: 33044222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks.
    Shi Z; Li H; Cao Q; Wang Z; Cheng M
    Med Phys; 2021 Jun; 48(6):2891-2905. PubMed ID: 33704786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Framelet tensor sparsity with block matching for spectral CT reconstruction.
    Yu X; Cai A; Wang L; Zheng Z; Wang Y; Wang Z; Li L; Yan B
    Med Phys; 2022 Apr; 49(4):2486-2501. PubMed ID: 35142376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial-Spectral Cube Matching Frame for Spectral CT Reconstruction.
    Wu W; Zhang Y; Wang Q; Liu F; Luo F; Yu H
    Inverse Probl; 2018 Oct; 34(10):. PubMed ID: 30906099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sparse angle CT reconstruction with weighted dictionary learning algorithm based on adaptive group-sparsity regularization.
    Yang T; Tang L; Tang Q; Li L
    J Xray Sci Technol; 2021; 29(3):435-452. PubMed ID: 33843720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral CT Reconstruction via Low-Rank Representation and Region-Specific Texture Preserving Markov Random Field Regularization.
    Shi Y; Gao Y; Zhang Y; Sun J; Mou X; Liang Z
    IEEE Trans Med Imaging; 2020 Oct; 39(10):2996-3007. PubMed ID: 32217474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal structure-aware dictionary learning-based 4D CBCT reconstruction.
    Zhi S; Kachelrieß M; Mou X
    Med Phys; 2021 Oct; 48(10):6421-6436. PubMed ID: 34514608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep convolutional dictionary learning network for sparse view CT reconstruction with a group sparse prior.
    Kang Y; Liu J; Wu F; Wang K; Qiang J; Hu D; Zhang Y
    Comput Methods Programs Biomed; 2024 Feb; 244():108010. PubMed ID: 38199137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral CT reconstruction via low-rank representation and structure preserving regularization.
    He Y; Zeng L; Xu Q; Wang Z; Yu H; Shen Z; Yang Z; Zhou R
    Phys Med Biol; 2023 Jan; 68(2):. PubMed ID: 36595335
    [No Abstract]   [Full Text] [Related]  

  • 16. Non-Local Low-Rank Cube-Based Tensor Factorization for Spectral CT Reconstruction.
    Wu W; Liu F; Zhang Y; Wang Q; Yu H
    IEEE Trans Med Imaging; 2019 Apr; 38(4):1079-1093. PubMed ID: 30371357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization.
    Dong X; Niu T; Zhu L
    Med Phys; 2014 May; 41(5):051909. PubMed ID: 24784388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning based spectral CT imaging.
    Wu W; Hu D; Niu C; Broeke LV; Butler APH; Cao P; Atlas J; Chernoglazov A; Vardhanabhuti V; Wang G
    Neural Netw; 2021 Dec; 144():342-358. PubMed ID: 34560584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A neural network-based method for spectral distortion correction in photon counting x-ray CT.
    Touch M; Clark DP; Barber W; Badea CT
    Phys Med Biol; 2016 Aug; 61(16):6132-53. PubMed ID: 27469292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectrotemporal CT data acquisition and reconstruction at low dose.
    Clark DP; Lee CL; Kirsch DG; Badea CT
    Med Phys; 2015 Nov; 42(11):6317-36. PubMed ID: 26520724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.