These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

469 related articles for article (PubMed ID: 3681984)

  • 1. At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells.
    Kozak M
    J Mol Biol; 1987 Aug; 196(4):947-50. PubMed ID: 3681984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Point mutations close to the AUG initiator codon affect the efficiency of translation of rat preproinsulin in vivo.
    Kozak M
    Nature; 1984 Mar 15-21; 308(5956):241-6. PubMed ID: 6700727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes.
    Kozak M
    Cell; 1986 Jan; 44(2):283-92. PubMed ID: 3943125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Translation of insulin-related polypeptides from messenger RNAs with tandemly reiterated copies of the ribosome binding site.
    Kozak M
    Cell; 1983 Oct; 34(3):971-8. PubMed ID: 6627393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification analysis of translation initiation signal sequences in vertebrate mRNAs.
    Lida Y; Masuda T
    Nucleic Acids Symp Ser; 1995; (34):103-4. PubMed ID: 8841573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection of initiation sites by eucaryotic ribosomes: effect of inserting AUG triplets upstream from the coding sequence for preproinsulin.
    Kozak M
    Nucleic Acids Res; 1984 May; 12(9):3873-93. PubMed ID: 6328442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strength of translation initiation signal sequence of mRNA as studied by quantification method: effect of nucleotide substitutions upon translation efficiency in rat preproinsulin mRNA.
    Iida Y; Masuda T
    Nucleic Acids Res; 1996 Sep; 24(17):3313-6. PubMed ID: 8811083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eukaryotic ribosomes can recognize preproinsulin initiation codons irrespective of their position relative to the 5' end of mRNA.
    Lomedico PT; McAndrew SJ
    Nature; 1982 Sep; 299(5880):221-6. PubMed ID: 6955600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of translational efficiency by contextual nucleotides flanking a baculovirus initiator AUG codon.
    Chang MJ; Kuzio J; Blissard GW
    Virology; 1999 Jul; 259(2):369-83. PubMed ID: 10388661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of intercistronic length on the efficiency of reinitiation by eucaryotic ribosomes.
    Kozak M
    Mol Cell Biol; 1987 Oct; 7(10):3438-45. PubMed ID: 3683388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes.
    Kozak M
    Nucleic Acids Res; 1981 Oct; 9(20):5233-52. PubMed ID: 7301588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recognition of AUG and alternative initiator codons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6.
    Kozak M
    EMBO J; 1997 May; 16(9):2482-92. PubMed ID: 9171361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influences of mRNA secondary structure on initiation by eukaryotic ribosomes.
    Kozak M
    Proc Natl Acad Sci U S A; 1986 May; 83(9):2850-4. PubMed ID: 3458245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes.
    Kozak M
    Proc Natl Acad Sci U S A; 1990 Nov; 87(21):8301-5. PubMed ID: 2236042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Context effects and inefficient initiation at non-AUG codons in eucaryotic cell-free translation systems.
    Kozak M
    Mol Cell Biol; 1989 Nov; 9(11):5073-80. PubMed ID: 2601709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AUG_hairpin: prediction of a downstream secondary structure influencing the recognition of a translation start site.
    Kochetov AV; Palyanov A; Titov II; Grigorovich D; Sarai A; Kolchanov NA
    BMC Bioinformatics; 2007 Aug; 8():318. PubMed ID: 17760957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs.
    Kozak M
    Nucleic Acids Res; 1984 Jan; 12(2):857-72. PubMed ID: 6694911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translational efficiency of a non-AUG initiation codon is significantly affected by its sequence context in yeast.
    Chen SJ; Lin G; Chang KJ; Yeh LS; Wang CC
    J Biol Chem; 2008 Feb; 283(6):3173-3180. PubMed ID: 18065417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection of CUG and AUG initiator codons for Drosophila E74A translation depends on downstream sequences.
    Boyd L; Thummel CS
    Proc Natl Acad Sci U S A; 1993 Oct; 90(19):9164-7. PubMed ID: 8415672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of the nucleotides immediately upstream of the AUG start codon on the efficiency of translation initiation in sperm cells.
    Shi JJ; Cao Y; Lang QH; Dong Y; Huang LY; Yang LJ; Li JJ; Zhang XX; Wang DY
    Plant Reprod; 2022 Sep; 35(3):221-231. PubMed ID: 35674836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.