These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36819860)

  • 21. A Solid-Phase Conversion Sulfur Cathode with Full Capacity Utilization and Superior Cycle Stability for Lithium-Sulfur Batteries.
    Wu X; Zhang Q; Tang G; Cao Y; Yang H; Li H; Ai X
    Small; 2022 Mar; 18(10):e2106144. PubMed ID: 35038220
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tunable Nitrogen-Doping of Sulfur Host Nanostructures for Stable and Shuttle-Free Room-Temperature Sodium-Sulfur Batteries.
    Eng AYS; Wang Y; Nguyen DT; Tee SY; Lim CYJ; Tan XY; Ng MF; Xu J; Seh ZW
    Nano Lett; 2021 Jun; 21(12):5401-5408. PubMed ID: 34125537
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-Dimensionally Reinforced Freestanding Cathode for High-Energy Room-Temperature Sodium-Sulfur Batteries.
    Ghosh A; Kumar A; Roy A; Panda MR; Kar M; MacFarlane DR; Mitra S
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14101-14109. PubMed ID: 30919631
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Continuous Carbon Channels Enable Full Na-Ion Accessibility for Superior Room-Temperature Na-S Batteries.
    Wu C; Lei Y; Simonelli L; Tonti D; Black A; Lu X; Lai WH; Cai X; Wang YX; Gu Q; Chou SL; Liu HK; Wang G; Dou SX
    Adv Mater; 2022 Feb; 34(8):e2108363. PubMed ID: 34881463
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbon-encapsulated V
    Hao Z; Jiang W; Zhu K
    Front Chem; 2022; 10():956610. PubMed ID: 36118320
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rational Design of Statically and Dynamically Stable Lithium-Sulfur Batteries with High Sulfur Loading and Low Electrolyte/Sulfur Ratio.
    Chung SH; Manthiram A
    Adv Mater; 2018 Feb; 30(6):. PubMed ID: 29271521
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pomegranate-Structured Silica/Sulfur Composite Cathodes for High-Performance Lithium-Sulfur Batteries.
    Choi S; Su D; Shin M; Park S; Wang G
    Chem Asian J; 2018 Mar; 13(5):568-576. PubMed ID: 29333699
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rechargeable Mg-M (M = Li, Na and K) dual-metal-ion batteries based on a Berlin green cathode and a metallic Mg anode.
    Zhang Y; Shen J; Li X; Chen Z; Cao SA; Li T; Xu F
    Phys Chem Chem Phys; 2019 Sep; 21(36):20269-20275. PubMed ID: 31490519
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Review on the Construction of Carbon-Based Metal Compound Composite Cathode Materials for Room Temperature Sodium-Sulfur Batteries.
    Wang X; Guo D; Yang L; Jin M; Chen X; Wang S
    Front Chem; 2022; 10():928429. PubMed ID: 35755245
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sulfur-Based Electrodes that Function via Multielectron Reactions for Room-Temperature Sodium-Ion Storage.
    Wang YX; Lai WH; Wang YX; Chou SL; Ai X; Yang H; Cao Y
    Angew Chem Int Ed Engl; 2019 Dec; 58(51):18324-18337. PubMed ID: 31087486
    [TBL] [Abstract][Full Text] [Related]  

  • 31. One-Step In Situ Preparation of Polymeric Selenium Sulfide Composite as a Cathode Material for Enhanced Sodium/Potassium Storage.
    Zhang W; Wang H; Zhang N; Liu H; Chen Z; Zhang L; Guo S; Li D; Xu J
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):29807-29813. PubMed ID: 31361119
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Double Heteroatom Reconfigured Polar Catalytic Surface Powers High-Performance Lithium-Sulfur Batteries.
    Shi Z; Gao B; Cai R; Wang L; Liu W; Chen Z
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Freestanding and Long-Life Sodium-Selenium Cathode by Encapsulation of Selenium into Microporous Multichannel Carbon Nanofibers.
    Yuan B; Sun X; Zeng L; Yu Y; Wang Q
    Small; 2018 Mar; 14(9):. PubMed ID: 29280299
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stabilization of Organic Cathodes by a Temperature-Induced Effect Enabling Higher Energy and Excellent Cyclability.
    Feng X; Chen X; Ren B; Wu X; Huang X; Ding R; Sun X; Tan S; Liu E; Gao P
    ACS Appl Mater Interfaces; 2021 Feb; 13(6):7178-7187. PubMed ID: 33538571
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pseudocapacitance-Enhanced Storage Kinetics of 3D Anhydrous Iron (III) Fluoride as a Cathode for Li/Na-Ion Batteries.
    Zhang T; Liu Y; Chen G; Liu H; Han Y; Zhai S; Zhang L; Pan Y; Li Q; Li Q
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432326
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Room-Temperature Potassium-Sulfur Batteries Enabled by Microporous Carbon Stabilized Small-Molecule Sulfur Cathodes.
    Xiong P; Han X; Zhao X; Bai P; Liu Y; Sun J; Xu Y
    ACS Nano; 2019 Feb; 13(2):2536-2543. PubMed ID: 30677289
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced kinetics of polysulfide redox reactions on Mo
    Razaq R; Sun D; Xin Y; Li Q; Huang T; Zheng L; Zhang Z; Huang Y
    Nanotechnology; 2018 Jul; 29(29):295401. PubMed ID: 29697050
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hierarchical Porous Metallic V
    Ding Y; Peng Y; Chen S; Zhang X; Li Z; Zhu L; Mo LE; Hu L
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44109-44117. PubMed ID: 31687795
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries.
    Zhang BW; Sheng T; Liu YD; Wang YX; Zhang L; Lai WH; Wang L; Yang J; Gu QF; Chou SL; Liu HK; Dou SX
    Nat Commun; 2018 Oct; 9(1):4082. PubMed ID: 30287817
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigating the Electrocatalysis of a Ti
    Zhou HY; Sui ZY; Amin K; Lin LW; Wang HY; Han BH
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):13904-13913. PubMed ID: 32108468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.