These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36819873)

  • 1. Rapid adsorption enthalpy surface sampling (RAESS) to characterize nanoporous materials.
    Ren E; Coudert FX
    Chem Sci; 2023 Feb; 14(7):1797-1807. PubMed ID: 36819873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale Modeling of Physical Properties of Nanoporous Frameworks: Predicting Mechanical, Thermal, and Adsorption Behavior.
    Hardiagon A; Coudert FX
    Acc Chem Res; 2024 Jun; 57(11):1620-1632. PubMed ID: 38752454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A GPU implementation of classical density functional theory for rapid prediction of gas adsorption in nanoporous materials.
    Zhou M; Wu J
    J Chem Phys; 2020 Aug; 153(7):074101. PubMed ID: 32828106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials.
    Thomas KM
    Dalton Trans; 2009 Mar; (9):1487-505. PubMed ID: 19421589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Building Block-Based Electronic Charges for High-Throughput Screening of Metal-Organic Frameworks for Adsorption Applications.
    Argueta E; Shaji J; Gopalan A; Liao P; Snurr RQ; Gómez-Gualdrón DA
    J Chem Theory Comput; 2018 Jan; 14(1):365-376. PubMed ID: 29227644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface interactions and quantum kinetic molecular sieving for H2 and D2 adsorption on a mixed metal-organic framework material.
    Chen B; Zhao X; Putkham A; Hong K; Lobkovsky EB; Hurtado EJ; Fletcher AJ; Thomas KM
    J Am Chem Soc; 2008 May; 130(20):6411-23. PubMed ID: 18435535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing nanoporous materials for gas storage.
    Simon CM; Kim J; Lin LC; Martin RL; Haranczyk M; Smit B
    Phys Chem Chem Phys; 2014 Mar; 16(12):5499-513. PubMed ID: 24394864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavior of the Enthalpy of Adsorption in Nanoporous Materials Close to Saturation Conditions.
    Torres-Knoop A; Poursaeidesfahani A; Vlugt TJH; Dubbeldam D
    J Chem Theory Comput; 2017 Jul; 13(7):3326-3339. PubMed ID: 28521093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An assessment of density functionals for predicting CO
    Lee JH; Hyldgaard P; Neaton JB
    J Chem Phys; 2022 Apr; 156(15):154113. PubMed ID: 35459296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning to fly: thermochemistry of energetic materials by modified thermogravimetric analysis and highly accurate quantum chemical calculations.
    Muravyev NV; Monogarov KA; Melnikov IN; Pivkina AN; Kiselev VG
    Phys Chem Chem Phys; 2021 Jul; 23(29):15522-15542. PubMed ID: 34286759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening of carbonaceous nanoporous materials for capture of nerve agents.
    Kowalczyk P; Gauden PA; Terzyk AP; Neimark AV
    Phys Chem Chem Phys; 2013 Jan; 15(1):291-8. PubMed ID: 23165364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct calorimetric measurement of enthalpy of adsorption of carbon dioxide on CD-MOF-2, a green metal-organic framework.
    Wu D; Gassensmith JJ; Gouvêa D; Ushakov S; Stoddart JF; Navrotsky A
    J Am Chem Soc; 2013 May; 135(18):6790-3. PubMed ID: 23611694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new mechanism for reduced cell adhesion: Adsorption dynamics of collagen on a nanoporous gold surface.
    Deguchi S; Yokoyama R; Maki T; Tomita K; Osugi R; Hakamada M; Mabuchi M
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 119():111461. PubMed ID: 33321592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of Methane Adsorption on Copper HKUST-1 at Low Pressure.
    Wu D; Guo X; Sun H; Navrotsky A
    J Phys Chem Lett; 2015 Jul; 6(13):2439-43. PubMed ID: 26266715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing gas adsorption in MOFs using an efficient ab initio widom insertion Monte Carlo method.
    Lee Y; Poloni R; Kim J
    J Comput Chem; 2016 Dec; 37(32):2808-2815. PubMed ID: 27718253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Throughput Characterization of Porous Materials Using Graphics Processing Units.
    Kim J; Martin RL; Rübel O; Haranczyk M; Smit B
    J Chem Theory Comput; 2012 May; 8(5):1684-93. PubMed ID: 26593662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do New MOFs Perform Better for CO
    Avci G; Erucar I; Keskin S
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41567-41579. PubMed ID: 32818375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiently mapping structure-property relationships of gas adsorption in porous materials: application to Xe adsorption.
    Kaija AR; Wilmer CE
    Faraday Discuss; 2017 Sep; 201():221-232. PubMed ID: 28634610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energetics of formic acid conversion to adsorbed formates on Pt(111) by transient calorimetry.
    Silbaugh TL; Karp EM; Campbell CT
    J Am Chem Soc; 2014 Mar; 136(10):3964-71. PubMed ID: 24512006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometrical Properties Can Predict CO2 and N2 Adsorption Performance of Metal-Organic Frameworks (MOFs) at Low Pressure.
    Fernandez M; Barnard AS
    ACS Comb Sci; 2016 May; 18(5):243-52. PubMed ID: 27022760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.