These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36820074)

  • 1. Effect of varying recovery intensities on power outputs during severe intensity intervals in trained cyclists during the Covid-19 pandemic.
    Chorley A; Lamb KL
    Sport Sci Health; 2023 Feb; ():1-9. PubMed ID: 36820074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dynamic model of the bi-exponential reconstitution and expenditure of W' in trained cyclists.
    Chorley A; Marwood S; Lamb KL
    Eur J Sport Sci; 2023 Dec; 23(12):2368-2378. PubMed ID: 37470470
    [No Abstract]   [Full Text] [Related]  

  • 3. Physiological and anthropometric determinants of critical power, W' and the reconstitution of W' in trained and untrained male cyclists.
    Chorley A; Bott RP; Marwood S; Lamb KL
    Eur J Appl Physiol; 2020 Nov; 120(11):2349-2359. PubMed ID: 32776219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Environmental Temperature on High-Intensity Intervals in Well-Trained Cyclists.
    Boynton JR; Danner F; Menaspà P; Peiffer JJ; Abbiss CR
    Int J Sports Physiol Perform; 2019 Nov; 14(10):1401-1407. PubMed ID: 30958046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slowing the Reconstitution of W' in Recovery With Repeated Bouts of Maximal Exercise.
    Chorley A; Bott RP; Marwood S; Lamb KL
    Int J Sports Physiol Perform; 2019 Feb; 14(2):149-155. PubMed ID: 29952673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Application of Critical Power, the Work Capacity above Critical Power (W'), and its Reconstitution: A Narrative Review of Current Evidence and Implications for Cycling Training Prescription.
    Chorley A; Lamb KL
    Sports (Basel); 2020 Sep; 8(9):. PubMed ID: 32899777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The 'Critical Power' Concept: Applications to Sports Performance with a Focus on Intermittent High-Intensity Exercise.
    Jones AM; Vanhatalo A
    Sports Med; 2017 Mar; 47(Suppl 1):65-78. PubMed ID: 28332113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the Recovery of W' in the Moderate to Heavy Exercise Intensity Domain.
    Sreedhara VSM; Ashtiani F; Mocko GM; Vahidi A; Hutchison RE
    Med Sci Sports Exerc; 2020 Dec; 52(12):2646-2654. PubMed ID: 32555021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of differing pedalling speeds on the power-duration relationship of high intensity cycle ergometry.
    McNaughton L; Thomas D
    Int J Sports Med; 1996 May; 17(4):287-92. PubMed ID: 8814511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between neuromuscular fatigue, muscle activation and the work done above the critical power during severe-intensity exercise.
    Ducrocq GP; Blain GM
    Exp Physiol; 2022 Apr; 107(4):312-325. PubMed ID: 35137992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is the Functional Threshold Power a Valid Surrogate of the Lactate Threshold?
    Valenzuela PL; Morales JS; Foster C; Lucia A; de la Villa P
    Int J Sports Physiol Perform; 2018 Nov; 13(10):1293-1298. PubMed ID: 29745765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three weeks of a home-based "sleep low-train low" intervention improves functional threshold power in trained cyclists: A feasibility study.
    Bennett S; Tiollier E; Brocherie F; Owens DJ; Morton JP; Louis J
    PLoS One; 2021; 16(12):e0260959. PubMed ID: 34855913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of inter-trial recovery times for the determination of critical power and W' in cycling.
    Karsten B; Hopker J; Jobson SA; Baker J; Petrigna L; Klose A; Beedie C
    J Sports Sci; 2017 Jul; 35(14):1420-1425. PubMed ID: 27531664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bi-exponential modelling of [Formula: see text] reconstitution kinetics in trained cyclists.
    Chorley A; Bott RP; Marwood S; Lamb KL
    Eur J Appl Physiol; 2022 Mar; 122(3):677-689. PubMed ID: 34921345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle metabolic responses during high-intensity intermittent exercise measured by (31)P-MRS: relationship to the critical power concept.
    Chidnok W; DiMenna FJ; Fulford J; Bailey SJ; Skiba PF; Vanhatalo A; Jones AM
    Am J Physiol Regul Integr Comp Physiol; 2013 Nov; 305(9):R1085-92. PubMed ID: 24068048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative analysis of critical power models in elite road cyclists.
    Clark B; Macdermid PW
    Curr Res Physiol; 2021; 4():139-144. PubMed ID: 34746833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy of W' Recovery Kinetics in High Performance Cyclists-Modeling Intermittent Work Capacity.
    Bartram JC; Thewlis D; Martin DT; Norton KI
    Int J Sports Physiol Perform; 2018 Jul; 13(6):724-728. PubMed ID: 29035607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical Power, Work Capacity, and Recovery Characteristics of Team-Pursuit Cyclists.
    Pugh CF; Beaven CM; Ferguson RA; Driller MW; Palmer CD; Paton CD
    Int J Sports Physiol Perform; 2022 Nov; 17(11):1606-1613. PubMed ID: 36068071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the expenditure and reconstitution of work capacity above critical power.
    Skiba PF; Chidnok W; Vanhatalo A; Jones AM
    Med Sci Sports Exerc; 2012 Aug; 44(8):1526-32. PubMed ID: 22382171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. W' Reconstitution Accelerates More with Decreasing Intensity in the Heavy- versus the Moderate-Intensity Domain.
    Lievens M; Caen K; Bourgois JG; Vermeire K; Boone J
    Med Sci Sports Exerc; 2021 Jun; 53(6):1276-1284. PubMed ID: 33273271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.