BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 36820489)

  • 1. Heterogeneous and Allosteric Role of Surface Hydration for Protein-Ligand Binding.
    Shi J; Cho JH; Hwang W
    J Chem Theory Comput; 2023 Mar; 19(6):1875-1887. PubMed ID: 36820489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculation of Thermodynamic Properties of Bound Water Molecules.
    Yang Y; Abdallah AHA; Lill MA
    Methods Mol Biol; 2018; 1762():389-402. PubMed ID: 29594782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of protein surface hydration shell free energy of water motion: theoretical study and molecular dynamics simulation.
    Sheu SY; Yang DY
    J Phys Chem B; 2010 Dec; 114(49):16558-66. PubMed ID: 21090707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. WATsite: hydration site prediction program with PyMOL interface.
    Hu B; Lill MA
    J Comput Chem; 2014 Jun; 35(16):1255-60. PubMed ID: 24752524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. WATsite2.0 with PyMOL Plugin: Hydration Site Prediction and Visualization.
    Yang Y; Hu B; Lill MA
    Methods Mol Biol; 2017; 1611():123-134. PubMed ID: 28451976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HydraMap v.2: Prediction of Hydration Sites and Desolvation Energy with Refined Statistical Potentials.
    Li Y; Zhang Z; Wang R
    J Chem Inf Model; 2023 Aug; 63(15):4749-4761. PubMed ID: 37433022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatially Heterogeneous Surface Water Diffusivity around Structured Protein Surfaces at Equilibrium.
    Barnes R; Sun S; Fichou Y; Dahlquist FW; Heyden M; Han S
    J Am Chem Soc; 2017 Dec; 139(49):17890-17901. PubMed ID: 29091442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of ligand and protein desolvation on ligand binding to the S1 pocket of thrombin.
    Biela A; Khayat M; Tan H; Kong J; Heine A; Hangauer D; Klebe G
    J Mol Biol; 2012 May; 418(5):350-66. PubMed ID: 22366545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of Ordered Water Molecules in Protein Binding Sites from Molecular Dynamics Simulations: The Impact of Ligand Binding on Hydration Networks.
    Rudling A; Orro A; Carlsson J
    J Chem Inf Model; 2018 Feb; 58(2):350-361. PubMed ID: 29308882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissecting the Influence of Protein Flexibility on the Location and Thermodynamic Profile of Explicit Water Molecules in Protein-Ligand Binding.
    Yang Y; Lill MA
    J Chem Theory Comput; 2016 Sep; 12(9):4578-92. PubMed ID: 27494046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate predictions of nonpolar solvation free energies require explicit consideration of binding-site hydration.
    Genheden S; Mikulskis P; Hu L; Kongsted J; Söderhjelm P; Ryde U
    J Am Chem Soc; 2011 Aug; 133(33):13081-92. PubMed ID: 21728337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entropy Hotspots for the Binding of Intrinsically Disordered Ligands to a Receptor Domain.
    Shi J; Shen Q; Cho JH; Hwang W
    Biophys J; 2020 May; 118(10):2502-2512. PubMed ID: 32311315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic Characterization of Hydration Sites from Integral Equation-Derived Free Energy Densities: Application to Protein Binding Sites and Ligand Series.
    Güssregen S; Matter H; Hessler G; Lionta E; Heil J; Kast SM
    J Chem Inf Model; 2017 Jul; 57(7):1652-1666. PubMed ID: 28565907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entropy connects water structure and dynamics in protein hydration layer.
    Dahanayake JN; Mitchell-Koch KR
    Phys Chem Chem Phys; 2018 May; 20(21):14765-14777. PubMed ID: 29780979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studying the Collective Functional Response of a Receptor in Alchemical Ligand Binding Free Energy Simulations with Accelerated Solvation Layer Dynamics.
    Jiang W
    J Chem Theory Comput; 2024 Apr; 20(8):3085-3095. PubMed ID: 38568961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Femtosecond Hydration Map of Intrinsically Disordered α-Synuclein.
    Arya S; Singh AK; Bhasne K; Dogra P; Datta A; Das P; Mukhopadhyay S
    Biophys J; 2018 Jun; 114(11):2540-2551. PubMed ID: 29874605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AquaMMapS: An Alternative Tool to Monitor the Role of Water Molecules During Protein-Ligand Association.
    Cuzzolin A; Deganutti G; Salmaso V; Sturlese M; Moro S
    ChemMedChem; 2018 Mar; 13(6):522-531. PubMed ID: 29193885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. WaterKit: Thermodynamic Profiling of Protein Hydration Sites.
    Eberhardt J; Forli S
    J Chem Theory Comput; 2023 May; 19(9):2535-2556. PubMed ID: 37094087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of water displacement on binding thermodynamics: concanavalin A.
    Li Z; Lazaridis T
    J Phys Chem B; 2005 Jan; 109(1):662-70. PubMed ID: 16851059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding.
    Katkova EV; Onufriev AV; Aguilar B; Sulimov VB
    J Mol Graph Model; 2017 Mar; 72():70-80. PubMed ID: 28064081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.