These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36821291)

  • 1. Thickness optimization algorithm to improve multilayer diffractive optical elements performance.
    Laborde V; Loicq J; Hastanin J; Habraken S
    Appl Opt; 2023 Jan; 62(3):836-843. PubMed ID: 36821291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid ray-tracing/Fourier optics method to analyze multilayer diffractive optical elements.
    Laborde V; Loicq J; Hastanin J; Habraken S
    Appl Opt; 2022 Jun; 61(16):4956-4966. PubMed ID: 36255982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multilayer diffractive optical element material selection method based on transmission, total internal reflection, and thickness.
    Laborde V; Loicq J; Hastanin J; Habraken S
    Appl Opt; 2022 Sep; 61(25):7415-7423. PubMed ID: 36256043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling infrared behavior of multilayer diffractive optical elements using Fourier optics.
    Laborde V; Loicq J; Habraken S
    Appl Opt; 2021 Mar; 60(7):2037-2045. PubMed ID: 33690296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization and analysis of infrared multilayer diffractive optical elements with finite feature sizes.
    Yang C; Yang H; Li C; Xue C
    Appl Opt; 2019 Apr; 58(10):2589-2595. PubMed ID: 31045058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization method of multilayer diffractive optical elements with consideration of ambient temperature.
    Piao M; Cui Q; Zhang B; Zhao C
    Appl Opt; 2018 Oct; 57(30):8861-8869. PubMed ID: 30461869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffraction efficiency sensitivity to oblique incident angle for multilayer diffractive optical elements.
    Yang H; Xue C; Li C; Wang J; Zhang R
    Appl Opt; 2016 Sep; 55(25):7126-33. PubMed ID: 27607291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rigorous electromagnetic design of finite-aperture diffractive optical elements by use of an iterative optimization algorithm.
    Di F; Yingbai Y; Guofan J; Qiaofeng T; Liu H
    J Opt Soc Am A Opt Image Sci Vis; 2003 Sep; 20(9):1739-46. PubMed ID: 12968646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal design of multilayer diffractive optical elements with effective area method.
    Yang H; Xue C; Li C; Wang J
    Appl Opt; 2016 Mar; 55(7):1675-82. PubMed ID: 26974629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integral diffraction efficiency model for multilayer diffractive optical elements with wide angles of incidence in case of polychromatic light.
    Mao S; Zhao L; Zhao J
    Opt Express; 2019 Jul; 27(15):21497-21507. PubMed ID: 31510226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal design of a multilayer diffractive optical element for dual wavebands.
    Xue C; Cui Q; Liu T; Yang L; Fei B
    Opt Lett; 2010 Dec; 35(24):4157-9. PubMed ID: 21165122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limits of scalar diffraction theory and an iterative angular spectrum algorithm for finite aperture diffractive optical element design.
    Mellin S; Nordin G
    Opt Express; 2001 Jun; 8(13):705-22. PubMed ID: 19421262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of diffraction efficiency to period width errors for multilayer diffractive optical elements.
    Yang H; Xue C
    Appl Opt; 2018 Feb; 57(4):855-860. PubMed ID: 29400750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of assembling errors on the diffraction efficiency for multilayer diffractive optical elements.
    Gao L; To S; Yang H; Nie X; Liu T; Xue C
    Appl Opt; 2014 Nov; 53(31):7341-7. PubMed ID: 25402898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient optimization of diffractive optical elements based on rigorous diffraction models.
    Testorf ME; Fiddy MA
    J Opt Soc Am A Opt Image Sci Vis; 2001 Nov; 18(11):2908-14. PubMed ID: 11688881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of dual-band infrared zoom lens with multilayer diffractive optical elements.
    Zhang B; Cui Q; Piao M; Hu Y
    Appl Opt; 2019 Mar; 58(8):2058-2067. PubMed ID: 30874079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Athermalization and thermal characteristics of multilayer diffractive optical elements.
    Wang J; Xue C
    Appl Opt; 2015 Nov; 54(33):9665-70. PubMed ID: 26836521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite-element simulation for X-ray volume diffractive optics based on the wave optical theory.
    Wang Y; Hu L; Zhang B; Zhou L; Tao Y; Li M; Jia Q
    Opt Express; 2020 Nov; 28(23):34973-34993. PubMed ID: 33182954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of passive facet of multilayer diffractive optical elements.
    Yang H; Xue C
    Appl Opt; 2018 Apr; 57(10):2604-2609. PubMed ID: 29714247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate material selection method for multilayer diffractive optics in a wide environmental temperature range.
    Piao M; Cui Q; Zhao C; Zhang B; Mao S; Zhao Y; Zhao L
    Appl Opt; 2017 Apr; 56(10):2826-2833. PubMed ID: 28375249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.