These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 36821307)

  • 1. Temperature effects on axial dispersion in a photopolymer-based holographic lens.
    Liu H; Sun G; Li M; Li L; Zhang J; Tai H; Yu D
    Appl Opt; 2023 Feb; 62(6):1475-1482. PubMed ID: 36821307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photopolymer-based coaxial holographic lens for spectral confocal displacement and morphology measurement.
    Liu H; Wang B; Wang R; Wang M; Yu D; Wang W
    Opt Lett; 2019 Jul; 44(14):3554-3557. PubMed ID: 31305571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expansion of axial dispersion in a photopolymer-based holographic lens and its improvement for measuring displacement.
    Liu Y; Liu H; Wang B; Wei M; Li L; Wang W
    Appl Opt; 2020 Sep; 59(27):8279-8284. PubMed ID: 32976413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of temperature-induced spectrum characterization in a holographic sensor based on N-isopropylacrylamide photopolymer hydrogel.
    Liu H; Yu D; Zhou K; Wang S; Luo S; Wang W; Song Q
    Appl Opt; 2017 Nov; 56(32):9006-9013. PubMed ID: 29131186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of holographic sensing response in substrate-free acrylamide photopolymer.
    Zhou K; Geng Y; Liu H; Wang S; Mao D; Yu D
    Appl Opt; 2017 May; 56(13):3714-3724. PubMed ID: 28463259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using acrylamide-based photopolymers for fabrication of holographic optical elements in solar energy applications.
    Akbari H; Naydenova I; Martin S
    Appl Opt; 2014 Mar; 53(7):1343-53. PubMed ID: 24663364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a confocal dispersion objective lens based on the GRIN lens.
    Li C; Li K; Liu J; Lv Z; Li G; Li D
    Opt Express; 2022 Nov; 30(24):44290-44299. PubMed ID: 36523107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure-dependent diffraction spectrum response in photopolymer-based holographic sensor.
    Jiao X; Liu H; Wang B; Wang R; Li L
    Appl Opt; 2019 Oct; 58(30):8302-8308. PubMed ID: 31674505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal Properties of Bayfol
    Blanche PA; Mahamat AH; Buoye E
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33276613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shear deformation response of a holographic sensor based on elastic poly(MMA-co-LMA) photopolymer.
    Liu H; Wei M; Li L; Wang B; Yu D; Wang W
    Opt Lett; 2021 Mar; 46(6):1249-1252. PubMed ID: 33720159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-way shift of wavelength in holographic sensing of organic vapor in nanozeolites dispersed acrylamide photopolymer.
    Mao D; Geng Y; Liu H; Zhou K; Xian L; Yu D
    Appl Opt; 2016 Aug; 55(23):6212-21. PubMed ID: 27534461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a photopolymer holographic lens for collimation of light from a green light-emitting diode.
    Keshri S; Murphy K; Toal V; Naydenova I; Martin S
    Appl Opt; 2018 Aug; 57(22):E163-E172. PubMed ID: 30117852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly sensitive and spatially resolved polyvinyl alcohol/acrylamide photopolymer for real-time holographic applications.
    Zhu J; Wang G; Hao Y; Xie B; Cheng AY
    Opt Express; 2010 Aug; 18(17):18106-12. PubMed ID: 20721198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-induced spectrum response of volume grating as an effective strategy for holographic sensing in acrylamide polymer part I: sensing.
    Liu H; Yu D; Zhou K; Mao D; Liu L; Wang H; Wang W; Song Q
    Appl Opt; 2016 Dec; 55(35):9907-9916. PubMed ID: 27958409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Holographic recording in acrylamide photopolymers: thickness limitations.
    Mahmud MS; Naydenova I; Pandey N; Babeva T; Jallapuram R; Martin S; Toal V
    Appl Opt; 2009 May; 48(14):2642-8. PubMed ID: 19424384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shrinkage during holographic recording in photopolymer films determined by holographic interferometry.
    Moothanchery M; Bavigadda V; Toal V; Naydenova I
    Appl Opt; 2013 Dec; 52(35):8519-27. PubMed ID: 24513896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Holographic Recording Performance of Acrylate-Based Photopolymer under Different Preparation Conditions for Waveguide Display.
    Shen Z; Weng Y; Zhang Y; Wang C; Liu A; Li X
    Polymers (Basel); 2021 Mar; 13(6):. PubMed ID: 33803646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a panchromatic acrylamide-based photopolymer for multicolor reflection holography.
    Meka C; Jallapuram R; Naydenova I; Martin S; Toal V
    Appl Opt; 2010 Mar; 49(8):1400-5. PubMed ID: 20220897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of the Effect of Methyldiethanolamine Initiator on the Recording Properties of Acrylamide Based Photopolymer.
    Rogers B; Martin S; Naydenova I
    Polymers (Basel); 2020 Mar; 12(4):. PubMed ID: 32218188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of spectrum strength in holographic sensing in nanozeolites dispersed acrylamide photopolymer.
    Yu D; Liu H; Mao D; Geng Y; Wang W; Sun L; Lv J
    Opt Express; 2015 Nov; 23(22):29113-26. PubMed ID: 26561180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.