These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36821328)

  • 1. Broadband plasma spray anti-reflection coating technology for millimeter-wave astrophysics.
    Jeong O; Plambeck R; Raum C; Suzuki A; Lee AT
    Appl Opt; 2023 Feb; 62(6):1628-1634. PubMed ID: 36821328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epoxy-based broadband antireflection coating for millimeter-wave optics.
    Rosen D; Suzuki A; Keating B; Krantz W; Lee AT; Quealy E; Richards PL; Siritanasak P; Walker W
    Appl Opt; 2013 Nov; 52(33):8102-5. PubMed ID: 24513764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anti-reflection coating with mullite and Duroid for large-diameter cryogenic sapphire and alumina optics.
    Sakaguri K; Hasegawa M; Sakurai Y; Sugiyama J; Farias N; Hill CA; Johnson BR; Konishi K; Kusaka A; Lee AT; Matsumura T; Wollack EJ; Yumoto J
    Appl Opt; 2024 Feb; 63(6):1618-1627. PubMed ID: 38437377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-aperture wide-bandwidth antireflection-coated silicon lenses for millimeter wavelengths.
    Datta R; Munson CD; Niemack MD; McMahon JJ; Britton J; Wollack EJ; Beall J; Devlin MJ; Fowler J; Gallardo P; Hubmayr J; Irwin K; Newburgh L; Nibarger JP; Page L; Quijada MA; Schmitt BL; Staggs ST; Thornton R; Zhang L
    Appl Opt; 2013 Dec; 52(36):8747-58. PubMed ID: 24513939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband, millimeter-wave antireflection coatings for large-format, cryogenic aluminum oxide optics.
    Nadolski A; Vieira JD; Sobrin JA; Kofman AM; Ade PAR; Ahmed Z; Anderson AJ; Avva JS; Basu Thakur R; Bender AN; Benson BA; Bryant L; Carlstrom JE; Carter FW; Cecil TW; Chang CL; Cheshire JR; Chesmore GE; Cliche JF; Cukierman A; de Haan T; Dierickx M; Ding J; Dutcher D; Everett W; Farwick J; Ferguson KR; Florez L; Foster A; Fu J; Gallicchio J; Gambrel AE; Gardner RW; Groh JC; Guns S; Guyser R; Halverson NW; Harke-Hosemann AH; Harrington NL; Harris RJ; Henning JW; Holzapfel WL; Howe D; Huang N; Irwin KD; Jeong O; Jonas M; Jones A; Korman M; Kovac J; Kubik DL; Kuhlmann S; Kuo CL; Lee AT; Lowitz AE; McMahon J; Meier J; Meyer SS; Michalik D; Montgomery J; Natoli T; Nguyen H; Noble GI; Novosad V; Padin S; Pan Z; Paschos P; Pearson J; Posada CM; Quan W; Rahlin A; Riebel D; Ruhl JE; Sayre JT; Shirokoff E; Smecher G; Stark AA; Stephen J; Story KT; Suzuki A; Tandoi C; Thompson KL; Tucker C; Vanderlinde K; Wang G; Whitehorn N; Yefremenko V; Yoon KW; Young MR
    Appl Opt; 2020 Apr; 59(10):3285-3295. PubMed ID: 32400613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-layer anti-reflection coating with mullite and polyimide foam for large-diameter cryogenic infrared filters.
    Inoue Y; Hamada T; Hasegawa M; Hazumi M; Hori Y; Suzuki A; Tomaru T; Matsumura T; Sakata T; Minamoto T; Hirai T
    Appl Opt; 2016 Dec; 55(34):D22-D28. PubMed ID: 27958435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep reactive ion etched anti-reflection coatings for sub-millimeter silicon optics.
    Gallardo PA; Koopman BJ; Cothard NF; Bruno SM; Cortes-Medellin G; Marchetti G; Miller KH; Mockler B; Niemack MD; Stacey G; Wollack EJ
    Appl Opt; 2017 Apr; 56(10):2796-2803. PubMed ID: 28375244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grass-like Alumina with Low Refractive Index for Scalable, Broadband, Omnidirectional Antireflection Coatings on Glass Using Atomic Layer Deposition.
    Kauppinen C; Isakov K; Sopanen M
    ACS Appl Mater Interfaces; 2017 May; 9(17):15038-15043. PubMed ID: 28398715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulated Performance of Laser-Machined Metamaterial Anti-reflection Coatings.
    Farias N; Beckman S; Lee AT; Suzuki A
    J Low Temp Phys; 2022; 209(5-6):1232-1241. PubMed ID: 36467122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wide-angle broadband antireflection coatings with nano-taper hydrated alumina film.
    Wang H; Yang C; Wang Y; Yuan W; Zheng T; Chen X; Liu Y; Zhang Y; Shen W
    Opt Express; 2022 Aug; 30(16):28922-28931. PubMed ID: 36299078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryogenic infrared filter made of alumina for use at millimeter wavelength.
    Inoue Y; Matsumura T; Hazumi M; Lee AT; Okamura T; Suzuki A; Tomaru T; Yamaguchi H
    Appl Opt; 2014 Mar; 53(9):1727-33. PubMed ID: 24663447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simons Observatory: broadband metamaterial antireflection cuttings for large-aperture alumina optics.
    Golec JE; Sutariya S; Jackson R; Zimmerman J; Dicker SR; Iuliano J; McMahon J; Puglisi G; Tucker C; Wollack EJ
    Appl Opt; 2022 Oct; 61(30):8904-8911. PubMed ID: 36607016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-IR Light-Tunable Omnidirectional Broadband Terahertz Wave Antireflection Based on a PEDOT:PSS/Graphene Hybrid Coating.
    Lai W; Liu G; Gou H; Wu H; Rahimi-Iman A
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):43868-43876. PubMed ID: 36106485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hollow silica nanoparticles in UV-visible antireflection coatings for poly(methyl methacrylate) substrates.
    Du Y; Luna LE; Tan WS; Rubner MF; Cohen RE
    ACS Nano; 2010 Jul; 4(7):4308-16. PubMed ID: 20536211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broadband omnidirectional antireflection coatings optimized by genetic algorithm.
    Poxson DJ; Schubert MF; Mont FW; Schubert EF; Kim JK
    Opt Lett; 2009 Mar; 34(6):728-30. PubMed ID: 19282913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Millimeter-wave antireflection coating for cryogenic silicon lenses.
    Lau J; Fowler J; Marriage T; Page L; Leong J; Wishnow E; Henry R; Wollack E; Halpern M; Marsden D; Marsden G
    Appl Opt; 2006 Jun; 45(16):3746-51. PubMed ID: 16724132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Millimeter-wave broadband antireflection coatings using laser ablation of subwavelength structures.
    Matsumura T; Young K; Wen Q; Hanany S; Ishino H; Inoue Y; Hazumi M; Koch J; Suttman O; Schütz V
    Appl Opt; 2016 May; 55(13):3502-9. PubMed ID: 27140362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of coating thickness on laser-induced damage characteristics of anti-reflection coatings irradiated by 1064  nm nanosecond laser pulses.
    Song Z; Cheng X; Ma H; Zhang J; Ma B; Jiao H; Wang Z
    Appl Opt; 2017 Feb; 56(4):C188-C192. PubMed ID: 28158072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antireflection coating formed by plasma-enhanced chemical-vapor deposition for terahertz-frequency germanium optics.
    Hosako I
    Appl Opt; 2003 Jul; 42(19):4045-8. PubMed ID: 12868846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of high heat resistant coatings by using gas tunnel type plasma spraying.
    Kobayashi A; Ando Y; Kurokawa K
    J Nanosci Nanotechnol; 2012 Jun; 12(6):5106-10. PubMed ID: 22905586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.