These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 36821425)

  • 1. CLAIRE: contrastive learning-based batch correction framework for better balance between batch mixing and preservation of cellular heterogeneity.
    Yan X; Zheng R; Wu F; Li M
    Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36821425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HDMC: a novel deep learning-based framework for removing batch effects in single-cell RNA-seq data.
    Wang X; Wang J; Zhang H; Huang S; Yin Y
    Bioinformatics; 2022 Feb; 38(5):1295-1303. PubMed ID: 34864918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scNAME: neighborhood contrastive clustering with ancillary mask estimation for scRNA-seq data.
    Wan H; Chen L; Deng M
    Bioinformatics; 2022 Mar; 38(6):1575-1583. PubMed ID: 34999761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ResPAN: a powerful batch correction model for scRNA-seq data through residual adversarial networks.
    Wang Y; Liu T; Zhao H
    Bioinformatics; 2022 Aug; 38(16):3942-3949. PubMed ID: 35771600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. scGCL: an imputation method for scRNA-seq data based on graph contrastive learning.
    Xiong Z; Luo J; Shi W; Liu Y; Xu Z; Wang B
    Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36825817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scDCCA: deep contrastive clustering for single-cell RNA-seq data based on auto-encoder network.
    Wang J; Xia J; Wang H; Su Y; Zheng CH
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36631401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CL-Impute: A contrastive learning-based imputation for dropout single-cell RNA-seq data.
    Shi Y; Wan J; Zhang X; Yin Y
    Comput Biol Med; 2023 Sep; 164():107263. PubMed ID: 37531858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BERMAD: batch effect removal for single-cell RNA-seq data using a multi-layer adaptation autoencoder with dual-channel framework.
    Zhan X; Yin Y; Zhang H
    Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38439545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GLOBE: a contrastive learning-based framework for integrating single-cell transcriptome datasets.
    Yan X; Zheng R; Li M
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35901449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. iSMNN: batch effect correction for single-cell RNA-seq data via iterative supervised mutual nearest neighbor refinement.
    Yang Y; Li G; Xie Y; Wang L; Lagler TM; Yang Y; Liu J; Qian L; Li Y
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33839756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. scGAD: a new task and end-to-end framework for generalized cell type annotation and discovery.
    Zhai Y; Chen L; Deng M
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36869836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep single-cell RNA-seq data clustering with graph prototypical contrastive learning.
    Lee J; Kim S; Hyun D; Lee N; Kim Y; Park C
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37233193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. deepMNN: Deep Learning-Based Single-Cell RNA Sequencing Data Batch Correction Using Mutual Nearest Neighbors.
    Zou B; Zhang T; Zhou R; Jiang X; Yang H; Jin X; Bai Y
    Front Genet; 2021; 12():708981. PubMed ID: 34447413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors.
    Haghverdi L; Lun ATL; Morgan MD; Marioni JC
    Nat Biotechnol; 2018 Jun; 36(5):421-427. PubMed ID: 29608177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NDMNN: A novel deep residual network based MNN method to remove batch effects from scRNA-seq data.
    Ma Y; Pei Y
    J Bioinform Comput Biol; 2024 Jun; 22(3):2450015. PubMed ID: 39036845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. scMRA: a robust deep learning method to annotate scRNA-seq data with multiple reference datasets.
    Yuan M; Chen L; Deng M
    Bioinformatics; 2022 Jan; 38(3):738-745. PubMed ID: 34623390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Propensity score matching enables batch-effect-corrected imputation in single-cell RNA-seq analysis.
    Xu X; Yu X; Hu G; Wang K; Zhang J; Li X
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35821114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. scNCL: transferring labels from scRNA-seq to scATAC-seq data with neighborhood contrastive regularization.
    Yan X; Zheng R; Chen J; Li M
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37584660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting cell types with supervised contrastive learning on cells and their types.
    Heryanto YD; Zhang YZ; Imoto S
    Sci Rep; 2024 Jan; 14(1):430. PubMed ID: 38172501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-supervised contrastive learning for integrative single cell RNA-seq data analysis.
    Han W; Cheng Y; Chen J; Zhong H; Hu Z; Chen S; Zong L; Hong L; Chan TF; King I; Gao X; Li Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36089561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.