These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 36821425)
21. Structure-preserved dimension reduction using joint triplets sampling for multi-batch integration of single-cell transcriptomic data. Xu X; Li X Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36627114 [TBL] [Abstract][Full Text] [Related]
22. scBatch: batch-effect correction of RNA-seq data through sample distance matrix adjustment. Fei T; Yu T Bioinformatics; 2020 May; 36(10):3115-3123. PubMed ID: 32053185 [TBL] [Abstract][Full Text] [Related]
23. A joint deep learning model enables simultaneous batch effect correction, denoising, and clustering in single-cell transcriptomics. Lakkis J; Wang D; Zhang Y; Hu G; Wang K; Pan H; Ungar L; Reilly MP; Li X; Li M Genome Res; 2021 Oct; 31(10):1753-1766. PubMed ID: 34035047 [TBL] [Abstract][Full Text] [Related]
24. Removal of batch effects using distribution-matching residual networks. Shaham U; Stanton KP; Zhao J; Li H; Raddassi K; Montgomery R; Kluger Y Bioinformatics; 2017 Aug; 33(16):2539-2546. PubMed ID: 28419223 [TBL] [Abstract][Full Text] [Related]
25. ScCCL: Single-Cell Data Clustering Based on Self-Supervised Contrastive Learning. Du L; Han R; Liu B; Wang Y; Li J IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):2233-2241. PubMed ID: 37022258 [TBL] [Abstract][Full Text] [Related]
26. Single-cell RNA-seq data semi-supervised clustering and annotation via structural regularized domain adaptation. Chen L; He Q; Zhai Y; Deng M Bioinformatics; 2021 May; 37(6):775-784. PubMed ID: 33098418 [TBL] [Abstract][Full Text] [Related]
27. BERMUDA: a novel deep transfer learning method for single-cell RNA sequencing batch correction reveals hidden high-resolution cellular subtypes. Wang T; Johnson TS; Shao W; Lu Z; Helm BR; Zhang J; Huang K Genome Biol; 2019 Aug; 20(1):165. PubMed ID: 31405383 [TBL] [Abstract][Full Text] [Related]
28. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge. Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988 [TBL] [Abstract][Full Text] [Related]
30. Batch alignment of single-cell transcriptomics data using deep metric learning. Yu X; Xu X; Zhang J; Li X Nat Commun; 2023 Feb; 14(1):960. PubMed ID: 36810607 [TBL] [Abstract][Full Text] [Related]
31. Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network. Gan Y; Huang X; Zou G; Zhou S; Guan J Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35172334 [TBL] [Abstract][Full Text] [Related]
32. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering. Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596 [TBL] [Abstract][Full Text] [Related]
33. scCNC: a method based on capsule network for clustering scRNA-seq data. Wang HY; Zhao JP; Zheng CH; Su YS Bioinformatics; 2022 Aug; 38(15):3703-3709. PubMed ID: 35699473 [TBL] [Abstract][Full Text] [Related]
35. scAWMV: an adaptively weighted multi-view learning framework for the integrative analysis of parallel scRNA-seq and scATAC-seq data. Zeng P; Ma Y; Lin Z Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36383176 [TBL] [Abstract][Full Text] [Related]
36. A test metric for assessing single-cell RNA-seq batch correction. Büttner M; Miao Z; Wolf FA; Teichmann SA; Theis FJ Nat Methods; 2019 Jan; 16(1):43-49. PubMed ID: 30573817 [TBL] [Abstract][Full Text] [Related]
37. SMNN: batch effect correction for single-cell RNA-seq data via supervised mutual nearest neighbor detection. Yang Y; Li G; Qian H; Wilhelmsen KC; Shen Y; Li Y Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32591778 [TBL] [Abstract][Full Text] [Related]
38. Integration of single cell data by disentangled representation learning. Guo T; Chen Y; Shi M; Li X; Zhang MQ Nucleic Acids Res; 2022 Jan; 50(2):e8. PubMed ID: 34850092 [TBL] [Abstract][Full Text] [Related]
39. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data. Wang H; Ma X Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164 [TBL] [Abstract][Full Text] [Related]
40. Integration of scRNA-seq data by disentangled representation learning with condition domain adaptation. Liu R; Qian K; He X; Li H BMC Bioinformatics; 2024 Mar; 25(1):116. PubMed ID: 38493095 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]