These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 36821425)
41. Single-cell RNA sequencing data analysis based on non-uniform ε-neighborhood network. Jia J; Chen L Bioinformatics; 2022 Apr; 38(9):2459-2465. PubMed ID: 35188181 [TBL] [Abstract][Full Text] [Related]
42. scEMAIL: Universal and Source-free Annotation Method for scRNA-seq Data with Novel Cell-type Perception. Wan H; Chen L; Deng M Genomics Proteomics Bioinformatics; 2022 Oct; 20(5):939-958. PubMed ID: 36608843 [TBL] [Abstract][Full Text] [Related]
43. bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data. Tang W; Bertaux F; Thomas P; Stefanelli C; Saint M; Marguerat S; Shahrezaei V Bioinformatics; 2020 Feb; 36(4):1174-1181. PubMed ID: 31584606 [TBL] [Abstract][Full Text] [Related]
44. A machine learning-based method for automatically identifying novel cells in annotating single-cell RNA-seq data. Li Z; Wang Y; Ganan-Gomez I; Colla S; Do KA Bioinformatics; 2022 Oct; 38(21):4885-4892. PubMed ID: 36083008 [TBL] [Abstract][Full Text] [Related]
45. Machine learning and statistical methods for clustering single-cell RNA-sequencing data. Petegrosso R; Li Z; Kuang R Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426 [TBL] [Abstract][Full Text] [Related]
46. SSRE: Cell Type Detection Based on Sparse Subspace Representation and Similarity Enhancement. Liang Z; Li M; Zheng R; Tian Y; Yan X; Chen J; Wu FX; Wang J Genomics Proteomics Bioinformatics; 2021 Apr; 19(2):282-291. PubMed ID: 33647482 [TBL] [Abstract][Full Text] [Related]
47. Random forest based similarity learning for single cell RNA sequencing data. Pouyan MB; Kostka D Bioinformatics; 2018 Jul; 34(13):i79-i88. PubMed ID: 29950006 [TBL] [Abstract][Full Text] [Related]
48. scGAC: a graph attentional architecture for clustering single-cell RNA-seq data. Cheng Y; Ma X Bioinformatics; 2022 Apr; 38(8):2187-2193. PubMed ID: 35176138 [TBL] [Abstract][Full Text] [Related]
49. DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data. Sun Z; Wang T; Deng K; Wang XF; Lafyatis R; Ding Y; Hu M; Chen W Bioinformatics; 2018 Jan; 34(1):139-146. PubMed ID: 29036318 [TBL] [Abstract][Full Text] [Related]
50. One Cell At a Time (OCAT): a unified framework to integrate and analyze single-cell RNA-seq data. Wang CX; Zhang L; Wang B Genome Biol; 2022 Apr; 23(1):102. PubMed ID: 35443717 [TBL] [Abstract][Full Text] [Related]
51. Unraveling Spatial Domain Characterization in Spatially Resolved Transcriptomics with Robust Graph Contrastive Clustering. Zhang Y; Yu Z; Wong KC; Li X Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 39012523 [TBL] [Abstract][Full Text] [Related]
52. Integrating Multiple Single-Cell RNA Sequencing Datasets Using Adversarial Autoencoders. Wang X; Zhang C; Wang L; Zheng P Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982574 [TBL] [Abstract][Full Text] [Related]
53. iMAP: integration of multiple single-cell datasets by adversarial paired transfer networks. Wang D; Hou S; Zhang L; Wang X; Liu B; Zhang Z Genome Biol; 2021 Feb; 22(1):63. PubMed ID: 33602306 [TBL] [Abstract][Full Text] [Related]
54. scHFC: a hybrid fuzzy clustering method for single-cell RNA-seq data optimized by natural computation. Wang J; Xia J; Tan D; Lin R; Su Y; Zheng CH Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136924 [TBL] [Abstract][Full Text] [Related]
55. scGAMNN: Graph Antoencoder-Based Single-Cell RNA Sequencing Data Integration Algorithm Using Mutual Nearest Neighbors. Zhang B; Wu H; Wang Y; Xuan C; Gao J IEEE J Biomed Health Inform; 2023 Nov; 27(11):5665-5674. PubMed ID: 37656653 [TBL] [Abstract][Full Text] [Related]
56. Single-cell multi-omics integration for unpaired data by a siamese network with graph-based contrastive loss. Liu C; Wang L; Liu Z BMC Bioinformatics; 2023 Jan; 24(1):5. PubMed ID: 36600199 [TBL] [Abstract][Full Text] [Related]
57. FIRM: Flexible integration of single-cell RNA-sequencing data for large-scale multi-tissue cell atlas datasets. Ming J; Lin Z; Zhao J; Wan X; ; Yang C; Wu AR Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35561293 [TBL] [Abstract][Full Text] [Related]
58. scWECTA: A weighted ensemble classification framework for cell type assignment based on single cell transcriptome. Ren T; Huang S; Liu Q; Wang G Comput Biol Med; 2023 Jan; 152():106409. PubMed ID: 36512878 [TBL] [Abstract][Full Text] [Related]
59. SMILE: mutual information learning for integration of single-cell omics data. Xu Y; Das P; McCord RP Bioinformatics; 2022 Jan; 38(2):476-486. PubMed ID: 34623402 [TBL] [Abstract][Full Text] [Related]
60. SAILER: scalable and accurate invariant representation learning for single-cell ATAC-seq processing and integration. Cao Y; Fu L; Wu J; Peng Q; Nie Q; Zhang J; Xie X Bioinformatics; 2021 Jul; 37(Suppl_1):i317-i326. PubMed ID: 34252968 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]