These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36821557)

  • 1. Spectral-conversion film potential for greenhouses: Utility of green-to-red photons conversion and far-red filtration for plant growth.
    Park Y; Runkle ES
    PLoS One; 2023; 18(2):e0281996. PubMed ID: 36821557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Paradise by the far-red light: Far-red and red:blue ratios independently affect yield, pigments, and carbohydrate production in lettuce,
    Van Brenk JB; Courbier S; Kleijweg CL; Verdonk JC; Marcelis LFM
    Front Plant Sci; 2024; 15():1383100. PubMed ID: 38745919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light emitting diode effect of red, blue, and amber light on photosynthesis and plant growth parameters.
    Wu BS; Mansoori M; Schwalb M; Islam S; Naznin MT; Addo PW; MacPherson S; Orsat V; Lefsrud M
    J Photochem Photobiol B; 2024 Jul; 256():112939. PubMed ID: 38761748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A strategic approach for investigating light recipes for 'Outredgeous' red romaine lettuce using white and monochromatic LEDs.
    Mickens MA; Skoog EJ; Reese LE; Barnwell PL; Spencer LE; Massa GD; Wheeler RM
    Life Sci Space Res (Amst); 2018 Nov; 19():53-62. PubMed ID: 30482283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supplementary White, UV-A, and Far-Red Radiation Differentially Regulates Growth and Nutritional Qualities of Greenhouse Lettuce.
    Yan Z; Wang C; Li Z; Li X; Cheng F; Lin D; Yang Y
    Plants (Basel); 2023 Sep; 12(18):. PubMed ID: 37765398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Far-red light effects on plant photosynthesis: from short-term enhancements to long-term effects of artificial solar light.
    Lazzarin M; Dupont K; van Ieperen W; Marcelis LFM; Driever SM
    Ann Bot; 2024 Jul; ():. PubMed ID: 38946023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supplementary Far-Red Light for Photosynthetic Active Radiation Differentially Influences the Photochemical Efficiency and Biomass Accumulation in Greenhouse-Grown Lettuce.
    Dou H; Li X; Li Z; Song J; Yang Y; Yan Z
    Plants (Basel); 2024 Aug; 13(15):. PubMed ID: 39124286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity of Seven Diverse Species to Blue and Green Light: Interactions with Photon Flux.
    Snowden MC; Cope KR; Bugbee B
    PLoS One; 2016; 11(10):e0163121. PubMed ID: 27706176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral effects of blue and red light on growth, anatomy, and physiology of lettuce.
    Izzo LG; Mickens MA; Aronne G; Gómez C
    Physiol Plant; 2021 Aug; 172(4):2191-2202. PubMed ID: 33715155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blue and Far-Red Light Affect Area and Number of Individual Leaves to Influence Vegetative Growth and Pigment Synthesis in Lettuce.
    Kong Y; Nemali K
    Front Plant Sci; 2021; 12():667407. PubMed ID: 34305967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adding Far-Red to Red-Blue Light-Emitting Diode Light Promotes Yield of Lettuce at Different Planting Densities.
    Jin W; Urbina JL; Heuvelink E; Marcelis LFM
    Front Plant Sci; 2020; 11():609977. PubMed ID: 33519862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissecting the Genotypic Variation of Growth Responses to Far-Red Radiation in Tomato.
    Ji Y; Ouzounis T; Schouten HJ; Visser RGF; Marcelis LFM; Heuvelink E
    Front Plant Sci; 2020; 11():614714. PubMed ID: 33519874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation.
    Yorio NC; Goins GD; Kagie HR; Wheeler RM; Sager JC
    HortScience; 2001 Apr; 36(2):380-3. PubMed ID: 12542027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing spectral quality with quantum dots to enhance crop yield in controlled environments.
    Parrish CH; Hebert D; Jackson A; Ramasamy K; McDaniel H; Giacomelli GA; Bergren MR
    Commun Biol; 2021 Jan; 4(1):124. PubMed ID: 33504914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoresponse to different lighting strategies during red leaf lettuce growth.
    Samuolienė G; Viršilė A; Haimi P; Miliauskienė J
    J Photochem Photobiol B; 2020 Jan; 202():111726. PubMed ID: 31816516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blue Photons from Broad-Spectrum LEDs Control Growth, Morphology, and Coloration of Indoor Hydroponic Red-Leaf Lettuce.
    Meng Q; Runkle ES
    Plants (Basel); 2023 Mar; 12(5):. PubMed ID: 36903988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effects of different proportions of red and blue light on the growth and photosynthesis of tomato seedlings].
    Wang LW; Li Y; Xin GF; Wei M; Mi QH; Yang QC
    Ying Yong Sheng Tai Xue Bao; 2017 May; 28(5):1595-1602. PubMed ID: 29745197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosynthesis in sun and shade: the surprising importance of far-red photons.
    Zhen S; van Iersel MW; Bugbee B
    New Phytol; 2022 Oct; 236(2):538-546. PubMed ID: 35832002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of LED Light Spectra on the Growth, Yield and Nutritional Value of Red and Green Lettuce (
    Alrajhi AA; Alsahli AS; Alhelal IM; Rihan HZ; Fuller MP; Alsadon AA; Ibrahim AA
    Plants (Basel); 2023 Jan; 12(3):. PubMed ID: 36771547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Continuous or End-of-Day Far-Red Light on Tomato Plant Growth, Morphology, Light Absorption, and Fruit Production.
    Kalaitzoglou P; van Ieperen W; Harbinson J; van der Meer M; Martinakos S; Weerheim K; Nicole CCS; Marcelis LFM
    Front Plant Sci; 2019; 10():322. PubMed ID: 30984211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.