BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36821745)

  • 1. Engineering Modular and Highly Sensitive Cell-Based Biosensors for Aromatic Contaminant Monitoring and High-Throughput Enzyme Screening.
    Sun S; Peng K; Sun S; Wang M; Shao Y; Li L; Xiang J; Sedjoah RA; Xin Z
    ACS Synth Biol; 2023 Mar; 12(3):877-891. PubMed ID: 36821745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. E. coli biosensor based on modular GFP and luxI/luxR cyclic amplification circuit for sensitive detection of lysine.
    Wang W; Zhang J; Tao H; Lv X; Deng Y; Li X
    Anal Bioanal Chem; 2022 Dec; 414(29-30):8299-8307. PubMed ID: 36253476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acclimation of bacterial cell state for high-throughput enzyme engineering using a DmpR-dependent transcriptional activation system.
    Kwon KK; Yeom SJ; Choi SL; Rha E; Lee H; Kim H; Lee DH; Lee SG
    Sci Rep; 2020 Apr; 10(1):6091. PubMed ID: 32269250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Colorimetric-Based Whole-Cell Biosensor for Organophosphorus Compounds by Engineering Transcription Regulator DmpR.
    Chong H; Ching CB
    ACS Synth Biol; 2016 Nov; 5(11):1290-1298. PubMed ID: 27346389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modularization and Response Curve Engineering of a Naringenin-Responsive Transcriptional Biosensor.
    De Paepe B; Maertens J; Vanholme B; De Mey M
    ACS Synth Biol; 2018 May; 7(5):1303-1314. PubMed ID: 29688705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward a generalized and high-throughput enzyme screening system based on artificial genetic circuits.
    Choi SL; Rha E; Lee SJ; Kim H; Kwon K; Jeong YS; Rhee YH; Song JJ; Kim HS; Lee SG
    ACS Synth Biol; 2014 Mar; 3(3):163-71. PubMed ID: 24295047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of novel bacterial regulatory proteins that detect priority pollutant phenols.
    Wise AA; Kuske CR
    Appl Environ Microbiol; 2000 Jan; 66(1):163-9. PubMed ID: 10618218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitive and Specific Whole-Cell Biosensor for Arsenic Detection.
    Jia X; Bu R; Zhao T; Wu K
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30952659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering tunable biosensors for monitoring putrescine in Escherichia coli.
    Chen XF; Xia XX; Lee SY; Qian ZG
    Biotechnol Bioeng; 2018 Apr; 115(4):1014-1027. PubMed ID: 29251347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals.
    Wang B; Barahona M; Buck M
    Biosens Bioelectron; 2013 Feb; 40(1):368-76. PubMed ID: 22981411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An engineered quorum-sensing-based whole-cell biosensor for active degradation of organophosphates.
    He J; Zhang X; Qian Y; Wang Q; Bai Y
    Biosens Bioelectron; 2022 Jun; 206():114085. PubMed ID: 35231682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An effective strategy for a whole-cell biosensor based on putative effector interaction site of the regulatory DmpR protein.
    Gupta S; Saxena M; Saini N; Mahmooduzzafar ; Kumar R; Kumar A
    PLoS One; 2012; 7(8):e43527. PubMed ID: 22937060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cascaded amplifying circuits enable ultrasensitive cellular sensors for toxic metals.
    Wan X; Volpetti F; Petrova E; French C; Maerkl SJ; Wang B
    Nat Chem Biol; 2019 May; 15(5):540-548. PubMed ID: 30911179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulating Sensitivity of an Erythromycin Biosensor for Precise High-Throughput Screening of Strains with Different Characteristics.
    Wang Y; Li S; Xue N; Wang L; Zhang X; Zhao L; Guo Y; Zhang Y; Wang M
    ACS Synth Biol; 2023 Jun; 12(6):1761-1771. PubMed ID: 37198736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Displaced by Deceivers: Prevention of Biosensor Cross-Talk Is Pivotal for Successful Biosensor-Based High-Throughput Screening Campaigns.
    Flachbart LK; Sokolowsky S; Marienhagen J
    ACS Synth Biol; 2019 Aug; 8(8):1847-1857. PubMed ID: 31268296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene circuit engineering to improve the performance of a whole-cell lead biosensor.
    Jia X; Zhao T; Liu Y; Bu R; Wu K
    FEMS Microbiol Lett; 2018 Aug; 365(16):. PubMed ID: 29961891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of enzymes with new specificity by high-throughput screening using DmpR-based genetic circuits and multiple flow cytometry rounds.
    Kwon KK; Lee DH; Kim SJ; Choi SL; Rha E; Yeom SJ; Subhadra B; Lee J; Jeong KJ; Lee SG
    Sci Rep; 2018 Feb; 8(1):2659. PubMed ID: 29422524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering and characterization of copper and gold sensors in Escherichia coli and Synechococcus sp. PCC 7002.
    Lacey RF; Ye D; Ruffing AM
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2797-2808. PubMed ID: 30645690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemiluminescent Biosensors for Detection of Second Messenger Cyclic di-GMP.
    Dippel AB; Anderson WA; Evans RS; Deutsch S; Hammond MC
    ACS Chem Biol; 2018 Jul; 13(7):1872-1879. PubMed ID: 29466657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of three genetically modified Escherichia coli biosensor strains for amperometric tetracycline measurement.
    Song W; Pasco N; Gooneratne R; Weld RJ
    Biosens Bioelectron; 2012 May; 35(1):69-74. PubMed ID: 22424754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.