BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36822030)

  • 21. Transport and long-term release behavior of polymer-coated silver nanoparticles in saturated quartz sand: The impacts of input concentration, grain size and flow rate.
    Hou J; Zhang M; Wang P; Wang C; Miao L; Xu Y; You G; Lv B; Yang Y; Liu Z
    Water Res; 2017 Dec; 127():86-95. PubMed ID: 29035769
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Household arsenic contaminated water treatment employing iron oxide/bamboo biochar composite: An approach to technology transfer.
    Alchouron J; Navarathna C; Rodrigo PM; Snyder A; Chludil HD; Vega AS; Bosi G; Perez F; Mohan D; Pittman CU; Mlsna TE
    J Colloid Interface Sci; 2021 Apr; 587():767-779. PubMed ID: 33309243
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Development of Zeolite Loaded Mg-La-Fe Ternary (hydr) oxides for Treatment of Low Concentration Phosphate Wastewater].
    Yin XJ; Song XB; Ding CM; Feng YF; Yang B; He SY; Xue LH
    Huan Jing Ke Xue; 2022 Jul; 43(7):3699-3707. PubMed ID: 35791553
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Trace Amounts of Phosphorus Removal Based on the in-suit Oxidation Products of Iron or Manganese in a Biofilter].
    Cai YA; Bi XJ; Zhang JN; Dong Y; Liu WZ
    Huan Jing Ke Xue; 2018 Jul; 39(7):3222-3229. PubMed ID: 29962146
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Laboratory and pilot-scale field experiments for application of iron oxide nanoparticle-loaded chitosan composites to phosphate removal from natural water.
    Kim JH; Kim SB; Lee SH; Choi JW
    Environ Technol; 2018 Mar; 39(6):770-779. PubMed ID: 28332409
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arsenic removal by iron and manganese coated sand.
    Yang JK; Song KH; Kim BK; Hong SC; Cho DE; Chang YY
    Water Sci Technol; 2007; 56(7):161-9. PubMed ID: 17951880
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimization of tetracycline removal from water by iron-coated pine-bark biochar.
    Zaib Q; Ryenchindorj U; Putra AS; Kyung D; Park HS
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):4972-4985. PubMed ID: 35976587
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrous iron oxide modified diatomite as an active filtration medium for phosphate capture.
    Wang Z; Lin Y; Wu D; Kong H
    Chemosphere; 2016 Feb; 144():1290-8. PubMed ID: 26476050
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low-cost chitosan-calcite adsorbent development for potential phosphate removal and recovery from wastewater effluent.
    Pap S; Kirk C; Bremner B; Turk Sekulic M; Shearer L; Gibb SW; Taggart MA
    Water Res; 2020 Apr; 173():115573. PubMed ID: 32035277
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oyster Shell Modified Tobacco Straw Biochar: Efficient Phosphate Adsorption at Wide Range of pH Values.
    Feng M; Li M; Zhang L; Luo Y; Zhao D; Yuan M; Zhang K; Wang F
    Int J Environ Res Public Health; 2022 Jun; 19(12):. PubMed ID: 35742476
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of phosphate on uranium(VI) adsorption to goethite-coated sand.
    Cheng T; Barnett MO; Roden EE; Zhuang J
    Environ Sci Technol; 2004 Nov; 38(22):6059-65. PubMed ID: 15573607
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Equilibrium and kinetics of phosphorous adsorption onto bone charcoal from aqueous solution.
    Ghaneian MT; Ghanizadeh G; Alizadeh MT; Ehrampoush MH; Said FM
    Environ Technol; 2014; 35(5-8):882-90. PubMed ID: 24645470
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phosphate adsorption performance of a novel filter substrate made from drinking water treatment residuals.
    Wang W; Ma C; Zhang Y; Yang S; Shao Y; Wang X
    J Environ Sci (China); 2016 Jul; 45():191-9. PubMed ID: 27372133
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fixed bed column evaluation of phosphate adsorption and recovery from aqueous solutions using recycled steel byproducts.
    Sellner BM; Hua G; Ahiablame LM
    J Environ Manage; 2019 Mar; 233():595-602. PubMed ID: 30597353
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient removal of arsenic from groundwater using iron oxide nanoneedle array-decorated biochar fibers with high Fe utilization and fast adsorption kinetics.
    Wei Y; Wei S; Liu C; Chen T; Tang Y; Ma J; Yin K; Luo S
    Water Res; 2019 Dec; 167():115107. PubMed ID: 31563708
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phosphate adsorption performance and mechanisms by nanoporous biochar-iron oxides from aqueous solutions.
    Zhang Z; Yu H; Zhu R; Zhang X; Yan L
    Environ Sci Pollut Res Int; 2020 Aug; 27(22):28132-28145. PubMed ID: 32410193
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fe(III) loaded chitosan-biochar composite fibers for the removal of phosphate from water.
    Palansooriya KN; Kim S; Igalavithana AD; Hashimoto Y; Choi YE; Mukhopadhyay R; Sarkar B; Ok YS
    J Hazard Mater; 2021 Aug; 415():125464. PubMed ID: 33730647
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of myo-inositol hexakisphosphate, ferrihydrite coating, ionic strength and pH on the transport of TiO
    Tang Y; Wang X; Yan Y; Zeng H; Wang G; Tan W; Liu F; Feng X
    Environ Pollut; 2019 Sep; 252(Pt B):1193-1201. PubMed ID: 31252117
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Removal of phosphate from water by a Fe-Mn binary oxide adsorbent.
    Zhang G; Liu H; Liu R; Qu J
    J Colloid Interface Sci; 2009 Jul; 335(2):168-74. PubMed ID: 19406416
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron-aluminum pillared bentonites.
    Yan LG; Xu YY; Yu HQ; Xin XD; Wei Q; Du B
    J Hazard Mater; 2010 Jul; 179(1-3):244-50. PubMed ID: 20334967
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.