BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

525 related articles for article (PubMed ID: 36822241)

  • 41. Preclinical models and technologies to advance nanovaccine development.
    Peres C; Matos AI; Moura LIF; Acúrcio RC; Carreira B; Pozzi S; Vaskovich-Koubi D; Kleiner R; Satchi-Fainaro R; Florindo HF
    Adv Drug Deliv Rev; 2021 May; 172():148-182. PubMed ID: 33711401
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Antigen epitope-TLR7/8a conjugate as self-assembled carrier-free nanovaccine for personalized immunotherapy.
    Song H; Su Q; Shi W; Huang P; Zhang C; Zhang C; Liu Q; Wang W
    Acta Biomater; 2022 Mar; 141():398-407. PubMed ID: 35007785
    [TBL] [Abstract][Full Text] [Related]  

  • 43. RNA cancer vaccines: developing mRNA nanovaccine with self-adjuvant property for cancer immunotherapy.
    Zhang H; Xia X
    Hum Vaccin Immunother; 2021 Sep; 17(9):2995-2998. PubMed ID: 33945399
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Engineering ApoE3-incorporated biomimetic nanoparticle for efficient vaccine delivery to dendritic cells via macropinocytosis to enhance cancer immunotherapy.
    Zhou S; Huang Y; Chen Y; Liu S; Xu M; Jiang T; Song Q; Jiang G; Gu X; Gao X; Chen J
    Biomaterials; 2020 Mar; 235():119795. PubMed ID: 32014739
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nanoparticle-mediated tumor vaccines for personalized therapy: preparing tumor antigens
    Li Q; Li J; Song S; Chen W; Shen X; Li S; Xing D
    J Mater Chem B; 2021 Mar; 9(10):2352-2366. PubMed ID: 33659970
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ionizable polymeric nanocarriers for the codelivery of bi-adjuvant and neoantigens in combination tumor immunotherapy.
    Su T; Liu X; Lin S; Cheng F; Zhu G
    Bioact Mater; 2023 Aug; 26():169-180. PubMed ID: 36883121
    [TBL] [Abstract][Full Text] [Related]  

  • 47. RNA Origami Functions as a Self-Adjuvanted Nanovaccine Platform for Cancer Immunotherapy.
    Yip T; Qi X; Yan H; Chang Y
    ACS Nano; 2024 Feb; 18(5):4056-4067. PubMed ID: 38270089
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Photodynamic Therapy Combined with Antihypoxic Signaling and CpG Adjuvant as an In Situ Tumor Vaccine Based on Metal-Organic Framework Nanoparticles to Boost Cancer Immunotherapy.
    Cai Z; Xin F; Wei Z; Wu M; Lin X; Du X; Chen G; Zhang D; Zhang Z; Liu X; Yao C
    Adv Healthc Mater; 2020 Jan; 9(1):e1900996. PubMed ID: 31746153
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Therapeutic Vaccines for Cancer Immunotherapy.
    Wang J; Mamuti M; Wang H
    ACS Biomater Sci Eng; 2020 Nov; 6(11):6036-6052. PubMed ID: 33449675
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced stimulation of anti-breast cancer T cells responses by dendritic cells loaded with poly lactic-co-glycolic acid (PLGA) nanoparticle encapsulated tumor antigens.
    Iranpour S; Nejati V; Delirezh N; Biparva P; Shirian S
    J Exp Clin Cancer Res; 2016 Oct; 35(1):168. PubMed ID: 27782834
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cancer Vaccines: Adjuvant Potency, Importance of Age, Lifestyle, and Treatments.
    Cuzzubbo S; Mangsbo S; Nagarajan D; Habra K; Pockley AG; McArdle SEB
    Front Immunol; 2020; 11():615240. PubMed ID: 33679703
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Peptide emulsions in incomplete Freund's adjuvant create effective nurseries promoting egress of systemic CD4
    Melssen MM; Fisher CT; Slingluff CL; Melief CJM
    J Immunother Cancer; 2022 Sep; 10(9):. PubMed ID: 36939214
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Responsive Multivesicular Polymeric Nanovaccines that Codeliver STING Agonists and Neoantigens for Combination Tumor Immunotherapy.
    Su T; Cheng F; Qi J; Zhang Y; Zhou S; Mei L; Fu S; Zhang F; Lin S; Zhu G
    Adv Sci (Weinh); 2022 Aug; 9(23):e2201895. PubMed ID: 35712773
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Combination of Sunitinib and PD-L1 Blockade Enhances Anticancer Efficacy of TLR7/8 Agonist-Based Nanovaccine.
    Kim H; Khanna V; Kucaba TA; Zhang W; Ferguson DM; Griffith TS; Panyam J
    Mol Pharm; 2019 Mar; 16(3):1200-1210. PubMed ID: 30620878
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lymph-targeted high-density lipoprotein-mimetic nanovaccine for multi-antigenic personalized cancer immunotherapy.
    Liu M; Feng Y; Lu Y; Huang R; Zhang Y; Zhao Y; Mo R
    Sci Adv; 2024 Mar; 10(11):eadk2444. PubMed ID: 38478602
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Induction of anti-cancer T cell immunity by in situ vaccination using systemically administered nanomedicines.
    Lynn GM; Laga R; Jewell CM
    Cancer Lett; 2019 Sep; 459():192-203. PubMed ID: 31185250
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nanomedicine for advanced cancer immunotherapy.
    Diep YN; Kim TJ; Cho H; Lee LP
    J Control Release; 2022 Nov; 351():1017-1037. PubMed ID: 36220487
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Heterologous prime-boost vaccination targeting MAGE-type antigens promotes tumor T-cell infiltration and improves checkpoint blockade therapy.
    McAuliffe J; Chan HF; Noblecourt L; Ramirez-Valdez RA; Pereira-Almeida V; Zhou Y; Pollock E; Cappuccini F; Redchenko I; Hill AV; Leung CSK; Van den Eynde BJ
    J Immunother Cancer; 2021 Sep; 9(9):. PubMed ID: 34479921
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chemical Strategies to Boost Cancer Vaccines.
    Li WH; Li YM
    Chem Rev; 2020 Oct; 120(20):11420-11478. PubMed ID: 32914967
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Polyanhydride Nanoparticles Induce Low Inflammatory Dendritic Cell Activation Resulting in CD8
    Darling R; Senapati S; Christiansen J; Liu L; Ramer-Tait AE; Narasimhan B; Wannemuehler M
    Int J Nanomedicine; 2020; 15():6579-6592. PubMed ID: 32982219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.